A292489
p-INVERT of the odd positive integers, where p(S) = 1 - S - 6 S^2.
Original entry on oeis.org
1, 10, 60, 312, 1656, 8928, 48024, 257904, 1385352, 7442784, 39985272, 214811280, 1154025000, 6199749504, 33306803352, 178933509936, 961281138888, 5164272731808, 27743925989304, 149048175357648, 800728728609384, 4301739993919680, 23110157427289560
Offset: 0
-
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s - 6 s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292489 *)
-
x='x+O('x^99); Vec(((1+x)*(1+4*x+7*x^2))/((1-5*x-2*x^2)*(1+3*x^2))) \\ Altug Alkan, Oct 03 2017
A292490
p-INVERT of the odd positive integers, where p(S) = 1 - S - 7 S^2.
Original entry on oeis.org
1, 11, 68, 365, 2019, 11328, 63321, 353483, 1974124, 11026373, 61584323, 343956104, 1921047729, 10729356747, 59925127764, 334691142941, 1869302113507, 10440343236752, 58310941508105, 325675681470731, 1818949357172988, 10159115194159989, 56740239146359107
Offset: 0
-
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s - 7 s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292490 *)
-
x='x+O('x^99); Vec(((1+x)*(1+5*x+8*x^2))/(1-5*x-17*x^3-7*x^4)) \\ Altug Alkan, Oct 03 2017
A292491
p-INVERT of the odd positive integers, where p(S) = 1 + S - 2 S^2.
Original entry on oeis.org
-1, 0, 8, 16, 24, 96, 360, 1008, 2808, 8640, 26568, 79056, 235224, 707616, 2128680, 6380208, 19123128, 57386880, 172213128, 516586896, 1549603224, 4648967136, 13947373800, 41841649008, 125523529848, 376572006720, 1129720271688, 3389156563536, 10167456936024
Offset: 0
-
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 + s - 2 s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292491 *)
-
x='x+O('x^99); Vec(((1+x)*(-1+4*x+x^2))/((1-3*x)*(1+3*x^2))) \\ Altug Alkan, Oct 03 2017
A292492
p-INVERT of the odd positive integers, where p(S) = 1 - S + S^2 - S^3.
Original entry on oeis.org
1, 3, 5, 8, 22, 100, 444, 1680, 5496, 16096, 43936, 117360, 323056, 946288, 2930320, 9287792, 29222800, 89856944, 269619792, 795460592, 2334102160, 6882700336, 20508738256, 61728245104, 186833742864, 565643533232, 1706639551568, 5125652284144, 15338915301264
Offset: 0
-
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s + s^2 - s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292492 *)
-
x='x+O('x^99); Vec(((1+x)*(1-5*x+8*x^2-x^3+x^4))/((1-3*x)*(1-4*x+7*x^2-2*x^3+2*x^4))) \\ Altug Alkan, Oct 03 2017
A292493
p-INVERT of the odd positive integers, where p(S) = 1 + S - 3 S^2.
Original entry on oeis.org
-1, 1, 12, 25, 61, 266, 963, 3053, 10220, 35413, 120345, 405682, 1376119, 4676201, 15859212, 53768225, 182400581, 618792826, 2098887003, 7119249973, 24149097580, 81915342653, 277858469505, 942504046562, 3197013067439, 10844389616401, 36784545696012
Offset: 0
-
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 + s + 3 s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292493 *)
-
x='x+O('x^99); Vec(((1+x)*(1-5*x-2*x^2))/(-1+3*x-2*x^2+11*x^3+x^4)) \\ Altug Alkan, Oct 05 2017
A292494
p-INVERT of the odd positive integers, where p(S) = 1 - S - S^2 - S^3.
Original entry on oeis.org
1, 5, 21, 88, 362, 1470, 5940, 23996, 97028, 392592, 1588840, 6430088, 26021472, 105301184, 426118816, 1724362608, 6977946160, 28237566352, 114268643984, 462409605552, 1871227376592, 7572272759344, 30642622403664, 124001121308400, 501793808163600
Offset: 0
-
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s - s^2 - s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292494 *)
Comments