cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A292489 p-INVERT of the odd positive integers, where p(S) = 1 - S - 6 S^2.

Original entry on oeis.org

1, 10, 60, 312, 1656, 8928, 48024, 257904, 1385352, 7442784, 39985272, 214811280, 1154025000, 6199749504, 33306803352, 178933509936, 961281138888, 5164272731808, 27743925989304, 149048175357648, 800728728609384, 4301739993919680, 23110157427289560
Offset: 0

Views

Author

Clark Kimberling, Oct 03 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A292480 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s - 6 s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A292489 *)
  • PARI
    x='x+O('x^99); Vec(((1+x)*(1+4*x+7*x^2))/((1-5*x-2*x^2)*(1+3*x^2))) \\ Altug Alkan, Oct 03 2017

Formula

G.f.: -(((1 + x) (1 + 4 x + 7 x^2))/((-1 + 5 x + 2 x^2) (1 + 3 x^2))).
a(n) = 5*a(n-1) - a(n-2) + 16*a(n-3) + 6*a(n-4) for n >= 5.

A292490 p-INVERT of the odd positive integers, where p(S) = 1 - S - 7 S^2.

Original entry on oeis.org

1, 11, 68, 365, 2019, 11328, 63321, 353483, 1974124, 11026373, 61584323, 343956104, 1921047729, 10729356747, 59925127764, 334691142941, 1869302113507, 10440343236752, 58310941508105, 325675681470731, 1818949357172988, 10159115194159989, 56740239146359107
Offset: 0

Views

Author

Clark Kimberling, Oct 03 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A292480 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s - 7 s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A292490 *)
  • PARI
    x='x+O('x^99); Vec(((1+x)*(1+5*x+8*x^2))/(1-5*x-17*x^3-7*x^4)) \\ Altug Alkan, Oct 03 2017

Formula

G.f.: -(((1 + x) (1 + 5 x + 8 x^2))/(-1 + 5 x + 17 x^3 + 7 x^4)).
a(n) = 5*a(n-1) + 17*a(n-3) + 7*a(n-4) for n >= 5.

A292491 p-INVERT of the odd positive integers, where p(S) = 1 + S - 2 S^2.

Original entry on oeis.org

-1, 0, 8, 16, 24, 96, 360, 1008, 2808, 8640, 26568, 79056, 235224, 707616, 2128680, 6380208, 19123128, 57386880, 172213128, 516586896, 1549603224, 4648967136, 13947373800, 41841649008, 125523529848, 376572006720, 1129720271688, 3389156563536, 10167456936024
Offset: 0

Views

Author

Clark Kimberling, Oct 03 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A292480 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x (x + 1)/(1 - x)^2; p = 1 + s - 2 s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A292491 *)
  • PARI
    x='x+O('x^99); Vec(((1+x)*(-1+4*x+x^2))/((1-3*x)*(1+3*x^2))) \\ Altug Alkan, Oct 03 2017

Formula

G.f.: -(((1 + x) (-1 + 4 x + x^2))/((-1 + 3 x) (1 + 3 x^2))).
a(n) = 3*a(n-1) - 3*a(n-2) + 9*a(n-3) for n >= 5.

A292492 p-INVERT of the odd positive integers, where p(S) = 1 - S + S^2 - S^3.

Original entry on oeis.org

1, 3, 5, 8, 22, 100, 444, 1680, 5496, 16096, 43936, 117360, 323056, 946288, 2930320, 9287792, 29222800, 89856944, 269619792, 795460592, 2334102160, 6882700336, 20508738256, 61728245104, 186833742864, 565643533232, 1706639551568, 5125652284144, 15338915301264
Offset: 0

Views

Author

Clark Kimberling, Oct 03 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A292480 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s + s^2 - s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A292492 *)
  • PARI
    x='x+O('x^99); Vec(((1+x)*(1-5*x+8*x^2-x^3+x^4))/((1-3*x)*(1-4*x+7*x^2-2*x^3+2*x^4))) \\ Altug Alkan, Oct 03 2017

Formula

G.f.: -(((1 + x) (1 - 5 x + 8 x^2 - x^3 + x^4))/((-1 + 3 x) (1 - 4 x + 7 x^2 - 2 x^3 + 2 x^4))).
a(n) = 7*a(n-1) - 19*a(n-2) + 23*a(n-3) - 8*a(n-4) + 6*a(n-5) for n >= 7.

A292493 p-INVERT of the odd positive integers, where p(S) = 1 + S - 3 S^2.

Original entry on oeis.org

-1, 1, 12, 25, 61, 266, 963, 3053, 10220, 35413, 120345, 405682, 1376119, 4676201, 15859212, 53768225, 182400581, 618792826, 2098887003, 7119249973, 24149097580, 81915342653, 277858469505, 942504046562, 3197013067439, 10844389616401, 36784545696012
Offset: 0

Views

Author

Clark Kimberling, Oct 04 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A292480 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x (x + 1)/(1 - x)^2; p = 1 + s + 3 s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A292493 *)
  • PARI
    x='x+O('x^99); Vec(((1+x)*(1-5*x-2*x^2))/(-1+3*x-2*x^2+11*x^3+x^4)) \\ Altug Alkan, Oct 05 2017

Formula

G.f.: -(((1 + x) (-1 + 5 x + 2 x^2))/(-1 + 3 x - 2 x^2 + 11 x^3 + x^4)).
a(n) = 3*a(n-1) - 2*a(n-2) + 11*a(n-3) + a(n-4) for n >= 5.

A292494 p-INVERT of the odd positive integers, where p(S) = 1 - S - S^2 - S^3.

Original entry on oeis.org

1, 5, 21, 88, 362, 1470, 5940, 23996, 97028, 392592, 1588840, 6430088, 26021472, 105301184, 426118816, 1724362608, 6977946160, 28237566352, 114268643984, 462409605552, 1871227376592, 7572272759344, 30642622403664, 124001121308400, 501793808163600
Offset: 0

Views

Author

Clark Kimberling, Oct 04 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A292480 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s - s^2 - s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A292494 *)

Formula

G.f.: -(((1 + x) (1 - 3 x + 6 x^2 - 3 x^3 + 3 x^4))/(-1 + 7 x - 17 x^2 + 23 x^3 - 12 x^4 + 6 x^5 + 2 x^6)).
a(n) = 7*a(n-1) - 17*a(n-2) + 23*a(n-3) + 12*a(n-4) + 6*a(n-5) + 2*a(n-6) for n >= 7.
Previous Showing 11-16 of 16 results.