A294534
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + 2, where a(0) = 1, a(1) = 2, b(0) = 3.
Original entry on oeis.org
1, 2, 8, 16, 31, 55, 95, 161, 268, 442, 724, 1181, 1921, 3119, 5059, 8198, 13278, 21498, 34799, 56321, 91145, 147492, 238664, 386184, 624877, 1011091, 1635999, 2647122, 4283155, 6930312, 11213503, 18143852, 29357393, 47501284, 76858717, 124360042, 201218801
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2) = a(1) + a(0) + b(0) + 2 = 8
Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + 2;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294534 *)
Table[b[n], {n, 0, 10}]
A294535
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + 3, where a(0) = 1, a(1) = 2, b(0) = 3.
Original entry on oeis.org
1, 2, 9, 18, 35, 62, 107, 180, 300, 494, 809, 1319, 2145, 3482, 5646, 9148, 14816, 23987, 38827, 62839, 101692, 164558, 266278, 430865, 697173, 1128069, 1825274, 2953376, 4778684, 7732095, 12510815, 20242947, 32753801, 52996788, 85750630, 138747460
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2) = a(1) + a(0) + b(0) + 3 = 9
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + 3;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294535 *)
Table[b[n], {n, 0, 10}]
A294536
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) - 1, where a(0) = 1, a(1) = 2, b(0) = 3.
Original entry on oeis.org
1, 2, 5, 10, 20, 36, 63, 107, 180, 298, 490, 801, 1305, 2121, 3442, 5580, 9040, 14640, 23701, 38363, 62087, 100474, 162586, 263086, 425699, 688813, 1114541, 1803384, 2917956, 4721372, 7639361, 12360767, 20000164, 32360968, 52361170, 84722177, 137083387
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2) = a(1) + a(0) + b(0) - 1 = 5
Complement: (b(n)) = (3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] - 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294536 *)
Table[b[n], {n, 0, 10}]
A294537
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + n, where a(0) = 1, a(1) = 2, b(0) = 3.
Original entry on oeis.org
1, 2, 8, 17, 34, 62, 109, 187, 314, 521, 857, 1402, 2285, 3715, 6030, 9778, 15843, 25658, 41540, 67239, 108822, 176106, 284975, 461130, 746156, 1207339, 1953550, 3160946, 5114555, 8275562, 13390180, 21665808, 35056056, 56721934, 91778062, 148500070
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2) = a(1) + a(0) + b(0) + 2 = 8
Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + n;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294537 *)
Table[b[n], {n, 0, 10}]
A294538
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + 2n, where a(0) = 1, a(1) = 2, b(0) = 3.
Original entry on oeis.org
1, 2, 10, 22, 45, 83, 147, 252, 424, 705, 1161, 1901, 3100, 5042, 8186, 13275, 21511, 34839, 56406, 91304, 147773, 239143, 386985, 626200, 1013260, 1639538, 2652879, 4292501, 6945467, 11238058, 18183618, 29421772, 47605489, 77027363, 124632957, 201660428
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2) = a(1) + a(0) + b(0) + 4 = 10
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + 2n;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294538 *)
Table[b[n], {n, 0, 10}]
A294539
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + n - 1, where a(0) = 1, a(1) = 2, b(0) = 3.
Original entry on oeis.org
1, 2, 7, 15, 30, 55, 98, 168, 283, 470, 774, 1267, 2066, 3361, 5457, 8850, 14341, 23227, 37606, 60873, 98521, 159438, 258005, 417491, 675546, 1093089, 1768689, 2861835, 4630583, 7492479, 12123125, 19615669, 31738861, 51354599, 83093531, 134448203
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2) = a(1) + a(0) + b(0) + 1 = 7
Complement: (b(n)) = (3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + n - 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294539 *)
Table[b[n], {n, 0, 10}]
A294540
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + 2*n - 1, where a(0) = 1, a(1) = 2, b(0) = 3.
Original entry on oeis.org
1, 2, 9, 20, 41, 76, 135, 232, 392, 652, 1075, 1761, 2873, 4674, 7590, 12310, 19949, 32311, 52316, 84686, 137064, 221815, 358947, 580833, 939854, 1520764, 2460698, 3981545, 6442329, 10423963, 16866384, 27290442, 44156924, 71447467, 115604495, 187052069
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2) = a(1) + a(0) + b(0) + 3 = 9
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, ...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + 2n - 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294540 *)
Table[b[n], {n, 0, 10}]
A294542
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + 1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 8, 16, 31, 55, 96, 162, 270, 445, 729, 1189, 1934, 3141, 5094, 8255, 13370, 21647, 35040, 56711, 91776, 148513, 240316, 388857, 629202, 1018089, 1647322, 2665444, 4312800, 6978279, 11291115, 18269431, 29560584, 47830054, 77390678, 125220773
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number");
a(2) = a(1) + a(0) + b(1) + 1 = 8.
Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, ...).
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294542 *)
Table[b[n], {n, 0, 10}]
A294543
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + 2, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 9, 18, 35, 62, 107, 181, 301, 496, 812, 1324, 2153, 3495, 5667, 9183, 14872, 24078, 38974, 63077, 102077, 165181, 267286, 432496, 699812, 1132339, 1832183, 2964555, 4796772, 7761362, 12558170, 20319570, 32877779, 53197389, 86075209, 139272640
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number");
a(2) = a(1) + a(0) + b(1) + 2 = 9.
Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, ...).
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + 2;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294543 *)
Table[b[n], {n, 0, 10}]
A294544
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + 3, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 2, 10, 20, 39, 69, 119, 200, 333, 548, 897, 1462, 2377, 3858, 6255, 10134, 16411, 26569, 43005, 69600, 112632, 182260, 294921, 477211, 772163, 1249406, 2021602, 3271042, 5292679, 8563757, 13856473, 22420268, 36276780, 58697088, 94973909, 153671040
Offset: 0
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number");
a(2) = a(1) + a(0) + b(1) + 3 = 10.
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, ...).
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + 3;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294544 *)
Table[b[n], {n, 0, 10}]
Comments