cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A294534 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + 2, where a(0) = 1, a(1) = 2, b(0) = 3.

Original entry on oeis.org

1, 2, 8, 16, 31, 55, 95, 161, 268, 442, 724, 1181, 1921, 3119, 5059, 8198, 13278, 21498, 34799, 56321, 91145, 147492, 238664, 386184, 624877, 1011091, 1635999, 2647122, 4283155, 6930312, 11213503, 18143852, 29357393, 47501284, 76858717, 124360042, 201218801
Offset: 0

Views

Author

Clark Kimberling, Nov 03 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622)..

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2)  = a(1) + a(0) + b(0) + 2 = 8
Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + 2;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294534 *)
    Table[b[n], {n, 0, 10}]

A294535 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + 3, where a(0) = 1, a(1) = 2, b(0) = 3.

Original entry on oeis.org

1, 2, 9, 18, 35, 62, 107, 180, 300, 494, 809, 1319, 2145, 3482, 5646, 9148, 14816, 23987, 38827, 62839, 101692, 164558, 266278, 430865, 697173, 1128069, 1825274, 2953376, 4778684, 7732095, 12510815, 20242947, 32753801, 52996788, 85750630, 138747460
Offset: 0

Views

Author

Clark Kimberling, Nov 03 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622)..

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2)  = a(1) + a(0) + b(0) + 3 = 9
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + 3;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294535 *)
    Table[b[n], {n, 0, 10}]

A294536 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) - 1, where a(0) = 1, a(1) = 2, b(0) = 3.

Original entry on oeis.org

1, 2, 5, 10, 20, 36, 63, 107, 180, 298, 490, 801, 1305, 2121, 3442, 5580, 9040, 14640, 23701, 38363, 62087, 100474, 162586, 263086, 425699, 688813, 1114541, 1803384, 2917956, 4721372, 7639361, 12360767, 20000164, 32360968, 52361170, 84722177, 137083387
Offset: 0

Views

Author

Clark Kimberling, Nov 03 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622)..

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2)  = a(1) + a(0) + b(0) - 1 = 5
Complement: (b(n)) = (3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] - 1;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294536 *)
    Table[b[n], {n, 0, 10}]

A294537 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + n, where a(0) = 1, a(1) = 2, b(0) = 3.

Original entry on oeis.org

1, 2, 8, 17, 34, 62, 109, 187, 314, 521, 857, 1402, 2285, 3715, 6030, 9778, 15843, 25658, 41540, 67239, 108822, 176106, 284975, 461130, 746156, 1207339, 1953550, 3160946, 5114555, 8275562, 13390180, 21665808, 35056056, 56721934, 91778062, 148500070
Offset: 0

Views

Author

Clark Kimberling, Nov 03 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622)..

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2)  = a(1) + a(0) + b(0) + 2 = 8
Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + n;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294537 *)
    Table[b[n], {n, 0, 10}]

A294538 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + 2n, where a(0) = 1, a(1) = 2, b(0) = 3.

Original entry on oeis.org

1, 2, 10, 22, 45, 83, 147, 252, 424, 705, 1161, 1901, 3100, 5042, 8186, 13275, 21511, 34839, 56406, 91304, 147773, 239143, 386985, 626200, 1013260, 1639538, 2652879, 4292501, 6945467, 11238058, 18183618, 29421772, 47605489, 77027363, 124632957, 201660428
Offset: 0

Views

Author

Clark Kimberling, Nov 03 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622)..

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2)  = a(1) + a(0) + b(0) + 4 = 10
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + 2n;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294538 *)
    Table[b[n], {n, 0, 10}]

A294539 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + n - 1, where a(0) = 1, a(1) = 2, b(0) = 3.

Original entry on oeis.org

1, 2, 7, 15, 30, 55, 98, 168, 283, 470, 774, 1267, 2066, 3361, 5457, 8850, 14341, 23227, 37606, 60873, 98521, 159438, 258005, 417491, 675546, 1093089, 1768689, 2861835, 4630583, 7492479, 12123125, 19615669, 31738861, 51354599, 83093531, 134448203
Offset: 0

Views

Author

Clark Kimberling, Nov 03 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622)..

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2)  = a(1) + a(0) + b(0) + 1 = 7
Complement: (b(n)) = (3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + n - 1;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294539 *)
    Table[b[n], {n, 0, 10}]

A294540 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + 2*n - 1, where a(0) = 1, a(1) = 2, b(0) = 3.

Original entry on oeis.org

1, 2, 9, 20, 41, 76, 135, 232, 392, 652, 1075, 1761, 2873, 4674, 7590, 12310, 19949, 32311, 52316, 84686, 137064, 221815, 358947, 580833, 939854, 1520764, 2460698, 3981545, 6442329, 10423963, 16866384, 27290442, 44156924, 71447467, 115604495, 187052069
Offset: 0

Views

Author

Clark Kimberling, Nov 03 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622)..

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2)  = a(1) + a(0) + b(0) + 3 = 9
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + 2n - 1;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294540 *)
    Table[b[n], {n, 0, 10}]

A294542 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + 1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 8, 16, 31, 55, 96, 162, 270, 445, 729, 1189, 1934, 3141, 5094, 8255, 13370, 21647, 35040, 56711, 91776, 148513, 240316, 388857, 629202, 1018089, 1647322, 2665444, 4312800, 6978279, 11291115, 18269431, 29560584, 47830054, 77390678, 125220773
Offset: 0

Views

Author

Clark Kimberling, Nov 04 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number");
a(2) = a(1) + a(0) + b(1) + 1 = 8.
Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, ...).
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + 1;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294542 *)
    Table[b[n], {n, 0, 10}]

A294543 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + 2, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 9, 18, 35, 62, 107, 181, 301, 496, 812, 1324, 2153, 3495, 5667, 9183, 14872, 24078, 38974, 63077, 102077, 165181, 267286, 432496, 699812, 1132339, 1832183, 2964555, 4796772, 7761362, 12558170, 20319570, 32877779, 53197389, 86075209, 139272640
Offset: 0

Views

Author

Clark Kimberling, Nov 04 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number");
a(2) = a(1) + a(0) + b(1) + 2 = 9.
Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, ...).
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + 2;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294543 *)
    Table[b[n], {n, 0, 10}]

A294544 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + 3, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 10, 20, 39, 69, 119, 200, 333, 548, 897, 1462, 2377, 3858, 6255, 10134, 16411, 26569, 43005, 69600, 112632, 182260, 294921, 477211, 772163, 1249406, 2021602, 3271042, 5292679, 8563757, 13856473, 22420268, 36276780, 58697088, 94973909, 153671040
Offset: 0

Views

Author

Clark Kimberling, Nov 04 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number");
a(2) = a(1) + a(0) + b(1) + 3 = 10.
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, ...).
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + 3;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294544 *)
    Table[b[n], {n, 0, 10}]
Previous Showing 11-20 of 34 results. Next