A296250
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n)^2, where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
3, 4, 32, 72, 153, 289, 523, 912, 1556, 2612, 4337, 7145, 11707, 19108, 31104, 50536, 82001, 132937, 215379, 348800, 564708, 914084, 1479417, 2394177, 3874323, 6269284, 10144448, 16414632, 26560041, 42975762, 69536959, 112513946, 182052201, 294567516
Offset: 0
a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5;
a(2) = a(0) + a(1) + b(2)^2 = 32;
Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...)
-
a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]^2;
j = 1; While[j < 6 , k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}] (* A296250 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296252
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)^2, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 20, 48, 104, 201, 369, 651, 1120, 1892, 3156, 5217, 8569, 14011, 22836, 37136, 60296, 97793, 158530, 256807, 415866, 673249, 1089740, 1763665, 2854134, 4618583, 7473558, 12093041, 19567560, 31661625, 51230274, 82893055, 134124554, 217018905, 351144828
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4;
a(2) = a(0) + a(1) + b(1)^2 = 20;
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, ...)
-
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-1]^2;
j = 1; While[j < 6 , k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}] (* A296252 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296253
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)^2, where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 4, 14, 43, 93, 185, 342, 608, 1050, 1779, 2973, 4921, 8119, 13296, 21704, 35324, 57389, 93113, 150943, 244540, 396012, 641128, 1037765, 1679569, 2718063, 4398416, 7117320, 11516636, 18634917, 30152577, 48788583, 78942316, 127732124, 206675736, 334409229
Offset: 0
a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3;
a(2) = a(0) + a(1) + b(1)^2 = 14;
Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, ...)
-
a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-1]^2;
j = 1; While[j < 6 , k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}] (* A296253 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296254
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)^2, where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
2, 3, 21, 49, 106, 204, 374, 659, 1133, 1913, 3190, 5272, 8658, 14155, 23069, 37513, 60906, 98780, 160086, 259350, 419965, 679891, 1100481, 1781048, 2882258, 4664090, 7547189, 12212179, 19760329, 31973532, 51734950, 83709638, 135445813, 219156747, 354603929
Offset: 0
a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4;
a(2) = a(0) + a(1) + b(1)^2 = 21;
Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, ...)
-
a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-1]^2;
j = 1; While[j < 6 , k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}] (* A296254 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296255
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)^2, where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
2, 4, 15, 44, 95, 188, 347, 616, 1063, 1800, 3007, 4976, 8179, 13411, 21879, 35614, 57854, 93868, 152163, 246515, 399207, 646298, 1046130, 1693104, 2739963, 4433851, 7174655, 11609406, 18785022, 30395452, 49181563, 79578171, 128760959, 208340426, 337102754
Offset: 0
a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3;
a(2) = a(0) + a(1) + b(1)^2 = 15;
Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, ...)
-
a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-1]^2;
j = 1; While[j < 6 , k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}] (* A296255 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296256
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)^2, where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
3, 4, 11, 40, 87, 176, 327, 584, 1011, 1739, 2919, 4854, 7998, 13108, 21395, 34827, 56583, 91810, 148834, 241128, 390491, 632195, 1023311, 1656182, 2680222, 4337188, 7018251, 11356339, 18375551, 29732914, 48109554, 77843624, 125954403, 203799323, 329755095
Offset: 0
a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2;
a(2) = a(0) + a(1) + b(1)^2 = 11;
Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 9, 10, 12, 13, 14, ...)
-
a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-1]^2;
j = 1; While[j < 6 , k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}] (* A296256 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296258
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)^2, where a(0) = 1, a(1) = 3, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 8, 27, 60, 123, 232, 436, 768, 1325, 2237, 3731, 6164, 10120, 16540, 26949, 43813, 71123, 115336, 186900, 302720, 490149, 793445, 1284219, 2078340, 3363343, 5442524, 8806767, 14250252, 23058043, 37309384, 60368583, 97679192, 158049071, 255729632
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2;
a(2) = a(0) + a(1) + b(0)^2 = 8;
Complement: (b(n)) = (2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ...)
-
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-2]^2;
j = 1; While[j < 6 , k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}] (* A296258 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296259
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)^2, where a(0) = 2, a(1) = 3, b(0) = 1, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
2, 3, 6, 25, 56, 130, 250, 461, 811, 1393, 2348, 3910, 6454, 10589, 17299, 28177, 45800, 74338, 120538, 195317, 316339, 512185, 829100, 1341961, 2171790, 3514535, 5687166, 9202601, 14890728, 24094353, 38986170, 63081679, 102069074, 165152049, 267222492
Offset: 0
a(0) = 2, a(1) = 3, b(0) = 1;
a(2) = a(0) + a(1) + b(0)^2 = 6;
Complement: (b(n)) = (1, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...)
-
a[0] = 2; a[1] = 3; b[0] = 1;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-2]^2;
j = 1; While[j < 6 , k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}] (* A296259 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296262
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1), where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 4, 11, 30, 71, 143, 270, 485, 845, 1450, 2451, 4083, 6744, 11067, 18083, 29456, 47881, 77717, 126018, 204197, 330721, 535470, 866791, 1402911, 2270404, 3674071, 5945287, 9620257, 15566536, 25187849, 40755507, 65944546, 106701313, 172647191, 279349910
Offset: 0
a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3,
a(2) = a(0) + a(1) + b(0)*b(1) = 11
Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, ...)
-
a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n - 2];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
u = Table[a[n], {n, 0, k}]; (* A296262 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296263
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1), where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
2, 3, 9, 32, 71, 145, 272, 497, 879, 1508, 2543, 4233, 6986, 11459, 18717, 30482, 49541, 80403, 130364, 211229, 342099, 553880, 896579, 1451109, 2348390, 3800255, 6149457, 9950582, 16100969, 26052574, 42154665, 68208429, 110364354, 178574115, 288939875
Offset: 0
a(0) = 2, a(1) = 3, b(0) = 2, b(1) = 1, b(2) = 4
a(2) = a(0) + a(1) + b(0)*b(1) = 9
Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, ...)
-
a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n - 2];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
u = Table[a[n], {n, 0, k}]; (* A296263 *)
Table[b[n], {n, 0, 20}] (* complement *)
Comments