cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 63 results. Next

A296250 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n)^2, where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

3, 4, 32, 72, 153, 289, 523, 912, 1556, 2612, 4337, 7145, 11707, 19108, 31104, 50536, 82001, 132937, 215379, 348800, 564708, 914084, 1479417, 2394177, 3874323, 6269284, 10144448, 16414632, 26560041, 42975762, 69536959, 112513946, 182052201, 294567516
Offset: 0

Views

Author

Clark Kimberling, Dec 10 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5;
a(2) = a(0) + a(1) + b(2)^2 = 32;
Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]^2;
    j = 1; While[j < 6 , k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]   (* A296250 *)
    Table[b[n], {n, 0, 20}]  (* complement *)

Formula

a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(2)^2 + f(n-2)*b(3)^2 + ... + f(2)*b(n-1)^2 + f(1)*b(n)^2, where f(n) = A000045(n), the n-th Fibonacci number.

A296252 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)^2, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 3, 20, 48, 104, 201, 369, 651, 1120, 1892, 3156, 5217, 8569, 14011, 22836, 37136, 60296, 97793, 158530, 256807, 415866, 673249, 1089740, 1763665, 2854134, 4618583, 7473558, 12093041, 19567560, 31661625, 51230274, 82893055, 134124554, 217018905, 351144828
Offset: 0

Views

Author

Clark Kimberling, Dec 11 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4;
a(2) = a(0) + a(1) + b(1)^2 = 20;
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-1]^2;
    j = 1; While[j < 6 , k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]   (* A296252 *)
    Table[b[n], {n, 0, 20}]  (* complement *)

Formula

a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(1)^2 + f(n-2)*b(2)^2 + ... + f(2)*b(n-2)^2 + f(1)*b(n-1)^2, where f(n) = A000045(n), the n-th Fibonacci number.

A296253 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)^2, where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 4, 14, 43, 93, 185, 342, 608, 1050, 1779, 2973, 4921, 8119, 13296, 21704, 35324, 57389, 93113, 150943, 244540, 396012, 641128, 1037765, 1679569, 2718063, 4398416, 7117320, 11516636, 18634917, 30152577, 48788583, 78942316, 127732124, 206675736, 334409229
Offset: 0

Views

Author

Clark Kimberling, Dec 11 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3;
a(2) = a(0) + a(1) + b(1)^2 = 14;
Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-1]^2;
    j = 1; While[j < 6 , k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]   (* A296253 *)
    Table[b[n], {n, 0, 20}]  (* complement *)

Formula

a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(1)^2 + f(n-2)*b(2)^2 + ... + f(2)*b(n-2)^2 + f(1)*b(n-1)^2, where f(n) = A000045(n), the n-th Fibonacci number.

A296254 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)^2, where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

2, 3, 21, 49, 106, 204, 374, 659, 1133, 1913, 3190, 5272, 8658, 14155, 23069, 37513, 60906, 98780, 160086, 259350, 419965, 679891, 1100481, 1781048, 2882258, 4664090, 7547189, 12212179, 19760329, 31973532, 51734950, 83709638, 135445813, 219156747, 354603929
Offset: 0

Views

Author

Clark Kimberling, Dec 11 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4;
a(2) = a(0) + a(1) + b(1)^2 = 21;
Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-1]^2;
    j = 1; While[j < 6 , k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]   (* A296254 *)
    Table[b[n], {n, 0, 20}]  (* complement *)

Formula

a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(1)^2 + f(n-2)*b(2)^2 + ... + f(2)*b(n-2)^2 + f(1)*b(n-1)^2, where f(n) = A000045(n), the n-th Fibonacci number.

A296255 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)^2, where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

2, 4, 15, 44, 95, 188, 347, 616, 1063, 1800, 3007, 4976, 8179, 13411, 21879, 35614, 57854, 93868, 152163, 246515, 399207, 646298, 1046130, 1693104, 2739963, 4433851, 7174655, 11609406, 18785022, 30395452, 49181563, 79578171, 128760959, 208340426, 337102754
Offset: 0

Views

Author

Clark Kimberling, Dec 11 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3;
a(2) = a(0) + a(1) + b(1)^2 = 15;
Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-1]^2;
    j = 1; While[j < 6 , k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]   (* A296255 *)
    Table[b[n], {n, 0, 20}]  (* complement *)

Formula

a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(1)^2 + f(n-2)*b(2)^2 + ... + f(2)*b(n-2)^2 + f(1)*b(n-1)^2, where f(n) = A000045(n), the n-th Fibonacci number.

A296256 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)^2, where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

3, 4, 11, 40, 87, 176, 327, 584, 1011, 1739, 2919, 4854, 7998, 13108, 21395, 34827, 56583, 91810, 148834, 241128, 390491, 632195, 1023311, 1656182, 2680222, 4337188, 7018251, 11356339, 18375551, 29732914, 48109554, 77843624, 125954403, 203799323, 329755095
Offset: 0

Views

Author

Clark Kimberling, Dec 11 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2;
a(2) = a(0) + a(1) + b(1)^2 = 11;
Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 9, 10, 12, 13, 14, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-1]^2;
    j = 1; While[j < 6 , k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]   (* A296256 *)
    Table[b[n], {n, 0, 20}]  (* complement *)

Formula

a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(1)^2 + f(n-2)*b(2)^2 + ... + f(2)*b(n-2)^2 + f(1)*b(n-1)^2, where f(n) = A000045(n), the n-th Fibonacci number.

A296258 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)^2, where a(0) = 1, a(1) = 3, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 3, 8, 27, 60, 123, 232, 436, 768, 1325, 2237, 3731, 6164, 10120, 16540, 26949, 43813, 71123, 115336, 186900, 302720, 490149, 793445, 1284219, 2078340, 3363343, 5442524, 8806767, 14250252, 23058043, 37309384, 60368583, 97679192, 158049071, 255729632
Offset: 0

Views

Author

Clark Kimberling, Dec 11 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 3, b(0) = 2;
a(2) = a(0) + a(1) + b(0)^2 = 8;
Complement: (b(n)) = (2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-2]^2;
    j = 1; While[j < 6 , k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]     (* A296258 *)
    Table[b[n], {n, 0, 20}]  (* complement *)

Formula

a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(0)^2 + f(n-2)*b(1)^2 + ... + f(2)*b(n-3)^2 + f(1)*b(n-2)^2, where f(n) = A000045(n), the n-th Fibonacci number.

A296259 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)^2, where a(0) = 2, a(1) = 3, b(0) = 1, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

2, 3, 6, 25, 56, 130, 250, 461, 811, 1393, 2348, 3910, 6454, 10589, 17299, 28177, 45800, 74338, 120538, 195317, 316339, 512185, 829100, 1341961, 2171790, 3514535, 5687166, 9202601, 14890728, 24094353, 38986170, 63081679, 102069074, 165152049, 267222492
Offset: 0

Views

Author

Clark Kimberling, Dec 11 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 2, a(1) = 3, b(0) = 1;
a(2) = a(0) + a(1) + b(0)^2 = 6;
Complement: (b(n)) = (1, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[1] = 3; b[0] = 1;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-2]^2;
    j = 1; While[j < 6 , k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}]   (* A296259 *)
    Table[b[n], {n, 0, 20}]  (* complement *)

Formula

a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(0)^2 + f(n-2)*b(1)^2 + ... + f(2)*b(n-3)^2 + f(1)*b(n-2)^2, where f(n) = A000045(n), the n-th Fibonacci number.

A296262 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1), where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 4, 11, 30, 71, 143, 270, 485, 845, 1450, 2451, 4083, 6744, 11067, 18083, 29456, 47881, 77717, 126018, 204197, 330721, 535470, 866791, 1402911, 2270404, 3674071, 5945287, 9620257, 15566536, 25187849, 40755507, 65944546, 106701313, 172647191, 279349910
Offset: 0

Views

Author

Clark Kimberling, Dec 11 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3,
a(2) = a(0) + a(1) + b(0)*b(1) = 11
Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n - 2];
    j = 1; While[j < 10, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    u = Table[a[n], {n, 0, k}];  (* A296262 *)
    Table[b[n], {n, 0, 20}]  (* complement *)

A296263 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1), where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

2, 3, 9, 32, 71, 145, 272, 497, 879, 1508, 2543, 4233, 6986, 11459, 18717, 30482, 49541, 80403, 130364, 211229, 342099, 553880, 896579, 1451109, 2348390, 3800255, 6149457, 9950582, 16100969, 26052574, 42154665, 68208429, 110364354, 178574115, 288939875
Offset: 0

Views

Author

Clark Kimberling, Dec 11 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 2, a(1) = 3, b(0) = 2, b(1) = 1, b(2) = 4
a(2) = a(0) + a(1) + b(0)*b(1) = 9
Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n - 2];
    j = 1; While[j < 10, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    u = Table[a[n], {n, 0, k}];  (* A296263 *)
    Table[b[n], {n, 0, 20}]      (* complement *)
Previous Showing 21-30 of 63 results. Next