A296264
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1), where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
2, 4, 9, 28, 67, 137, 260, 477, 847, 1456, 2459, 4097, 6766, 11103, 18141, 29550, 48033, 77963, 126416, 204841, 331763, 537156, 869519, 1407325, 2277546, 3685654, 5964070, 9650654, 15615716, 25267426, 40884264, 66152880, 107038404, 173192616, 280232426
Offset: 0
a(0) = 2, a(1) = 4, b(0) = 2, b(1) = 1, b(2) = 3;
a(2) = a(0) + a(1) + b(0)*b(1) = 9;
Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, ...)
-
a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n - 2];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
u = Table[a[n], {n, 0, k}]; (* A296264 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296265
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1), where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
3, 4, 9, 23, 62, 127, 245, 452, 807, 1391, 2354, 3927, 6491, 10658, 17421, 28385, 46148, 74913, 121481, 196856, 318865, 516321, 835836, 1352859, 2189451, 3543122, 5733443, 9277495, 15011930, 24290481, 39303533, 63595204, 102899997, 166496533, 269397936
Offset: 0
a(0) = 3, a(1) = 4, b(0) = 2, b(1) = 1, b(2) = 2;
a(2) = a(0) + a(1) + b(0)*b(1) = 9;
Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, ...)
-
a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n - 2];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296265 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296267
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 14, 41, 90, 179, 332, 591, 1022, 1733, 2898, 4811, 7917, 12983, 21188, 34494, 56042, 90935, 147417, 238835, 386780, 626190, 1013594, 1640459, 2654781, 4296023, 6951644, 11248566, 18201170, 29450759, 47653017, 77104931, 124759172, 201865398, 326625938
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 3, b(1) = 2, b(2) = 4, b(3) = 5;
a(2) = a(0) + a(1) + b(0)*b(2) = 14;
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, ...)
-
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296267 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296268
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n), where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 4, 15, 37, 87, 172, 322, 574, 995, 1689, 2827, 4684, 7719, 12641, 20648, 33612, 54620, 88631, 143691, 232805, 377024, 610404, 988052, 1599131, 2587911, 4187825, 6776576, 10965300, 17742836, 28709159, 46453083, 75163397, 121617704, 196782431, 318401539
Offset: 0
a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5;
a(2) = a(0) + a(1) + b(0)*b(2) = 15;
Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, ...)
-
a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296268 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296269
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n), where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
2, 3, 10, 37, 82, 167, 312, 567, 987, 1697, 2852, 4744, 7820, 12819, 20927, 34069, 55356, 89824, 145620, 235927, 382075, 618577, 1001276, 1620528, 2622532, 4243843, 6867215, 11111957, 17980132, 29093112, 47074332, 76168599, 123244155, 199414084, 322659643
Offset: 0
a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5;
a(2) = a(0) + a(1) + b(0)*b(2) = 10;
Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, ...)
-
a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296269 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296270
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n), where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
2, 4, 11, 33, 79, 160, 302, 542, 952, 1624, 2744, 4563, 7531, 12349, 20168, 32840, 53368, 86607, 140415, 227505, 368448, 596528, 965600, 1562803, 2529131, 4092717, 6622688, 10716304, 17339952, 28057310, 45398382, 73456916, 118856593, 192314877, 311172913
Offset: 0
a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5;
a(2) = a(0) + a(1) + b(0)*b(2) = 11;
Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, ...)
-
a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296270 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296271
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n), where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
3, 4, 12, 28, 75, 151, 289, 520, 908, 1558, 2620, 4373, 7217, 11845, 19350, 31518, 51228, 83145, 134813, 218441, 353782, 572798, 927204, 1500677, 2428635, 3930122, 6359656, 10290738, 16651417, 26943243, 43595815, 70540282, 114137392, 184679042, 298817877
Offset: 0
a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5;
a(2) = a(0) + a(1) + b(0)*b(2) = 11;
Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, ...)
-
a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296271 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296273
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)*b(n), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 3, 24, 57, 123, 236, 431, 757, 1298, 2187, 3641, 6010, 9861, 16111, 26244, 42661, 69247, 112288, 181955, 294705, 477166, 772446, 1250262, 2023410, 3274428, 5298650, 8573948, 13873528, 22448468, 36323052, 58772642, 95096884, 153870786, 248969002, 402841194
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5;
a(2) = a(0) + a(1) + b(1)*b(2) = 24;
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ...)
-
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296273 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296274
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)*b(n), where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
1, 4, 20, 54, 116, 226, 414, 730, 1254, 2116, 3526, 5824, 9560, 15624, 25456, 41386, 67184, 108969, 176615, 286090, 463257, 749947, 1213854, 1964503, 3179113, 5144428, 8324411, 13469769, 21795172, 35265997, 57062291, 92329478, 149393029, 241723839, 391118274
Offset: 0
a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5;
a(2) = a(0) + a(1) + b(1)*b(2) = 20;
Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, ...)
-
a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296274 *)
Table[b[n], {n, 0, 20}] (* complement *)
A296275
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)*b(n), where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
Original entry on oeis.org
2, 3, 25, 58, 125, 239, 436, 765, 1311, 2208, 3675, 6065, 9950, 16255, 26477, 43038, 69857, 113275, 183552, 297289, 481347, 779188, 1261159, 2041049, 3302964, 5344825, 8648659, 13994414, 22644065, 36639535, 59284722, 95925447, 155211429, 251138208, 406351043
Offset: 0
a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5;
a(2) = a(0) + a(1) + b(1)*b(2) = 25;
Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...)
-
a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n];
j = 1; While[j < 10, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296275 *)
Table[b[n], {n, 0, 20}] (* complement *)
Comments