cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 63 results. Next

A296264 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1), where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

2, 4, 9, 28, 67, 137, 260, 477, 847, 1456, 2459, 4097, 6766, 11103, 18141, 29550, 48033, 77963, 126416, 204841, 331763, 537156, 869519, 1407325, 2277546, 3685654, 5964070, 9650654, 15615716, 25267426, 40884264, 66152880, 107038404, 173192616, 280232426
Offset: 0

Views

Author

Clark Kimberling, Dec 12 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 2, a(1) = 4, b(0) = 2, b(1) = 1, b(2) = 3;
a(2) = a(0) + a(1) + b(0)*b(1) = 9;
Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n - 2];
    j = 1; While[j < 10, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    u = Table[a[n], {n, 0, k}]; (* A296264 *)
    Table[b[n], {n, 0, 20}]     (* complement *)

A296265 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1), where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

3, 4, 9, 23, 62, 127, 245, 452, 807, 1391, 2354, 3927, 6491, 10658, 17421, 28385, 46148, 74913, 121481, 196856, 318865, 516321, 835836, 1352859, 2189451, 3543122, 5733443, 9277495, 15011930, 24290481, 39303533, 63595204, 102899997, 166496533, 269397936
Offset: 0

Views

Author

Clark Kimberling, Dec 12 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 3, a(1) = 4, b(0) = 2, b(1) = 1, b(2) = 2;
a(2) = a(0) + a(1) + b(0)*b(1) = 9;
Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n - 2];
    j = 1; While[j < 10, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}];  (* A296265 *)
    Table[b[n], {n, 0, 20}]  (* complement *)

A296267 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 3, 14, 41, 90, 179, 332, 591, 1022, 1733, 2898, 4811, 7917, 12983, 21188, 34494, 56042, 90935, 147417, 238835, 386780, 626190, 1013594, 1640459, 2654781, 4296023, 6951644, 11248566, 18201170, 29450759, 47653017, 77104931, 124759172, 201865398, 326625938
Offset: 0

Views

Author

Clark Kimberling, Dec 12 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 3, b(0) = 3, b(1) = 2, b(2) = 4, b(3) = 5;
a(2) = a(0) + a(1) + b(0)*b(2) = 14;
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] b[n];
    j = 1; While[j < 10, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}];  (* A296267 *)
    Table[b[n], {n, 0, 20}]  (* complement *)

A296268 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n), where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 4, 15, 37, 87, 172, 322, 574, 995, 1689, 2827, 4684, 7719, 12641, 20648, 33612, 54620, 88631, 143691, 232805, 377024, 610404, 988052, 1599131, 2587911, 4187825, 6776576, 10965300, 17742836, 28709159, 46453083, 75163397, 121617704, 196782431, 318401539
Offset: 0

Views

Author

Clark Kimberling, Dec 12 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5;
a(2) = a(0) + a(1) + b(0)*b(2) = 15;
Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] b[n];
    j = 1; While[j < 10, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}];  (* A296268 *)
    Table[b[n], {n, 0, 20}]  (* complement *)

A296269 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n), where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

2, 3, 10, 37, 82, 167, 312, 567, 987, 1697, 2852, 4744, 7820, 12819, 20927, 34069, 55356, 89824, 145620, 235927, 382075, 618577, 1001276, 1620528, 2622532, 4243843, 6867215, 11111957, 17980132, 29093112, 47074332, 76168599, 123244155, 199414084, 322659643
Offset: 0

Views

Author

Clark Kimberling, Dec 12 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5;
a(2) = a(0) + a(1) + b(0)*b(2) = 10;
Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] b[n];
    j = 1; While[j < 10, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}];  (* A296269 *)
    Table[b[n], {n, 0, 20}]  (* complement *)

A296270 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n), where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

2, 4, 11, 33, 79, 160, 302, 542, 952, 1624, 2744, 4563, 7531, 12349, 20168, 32840, 53368, 86607, 140415, 227505, 368448, 596528, 965600, 1562803, 2529131, 4092717, 6622688, 10716304, 17339952, 28057310, 45398382, 73456916, 118856593, 192314877, 311172913
Offset: 0

Views

Author

Clark Kimberling, Dec 12 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5;
a(2) = a(0) + a(1) + b(0)*b(2) = 11;
Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] b[n];
    j = 1; While[j < 10, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}];  (* A296270 *)
    Table[b[n], {n, 0, 20}]  (* complement *)

A296271 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n), where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

3, 4, 12, 28, 75, 151, 289, 520, 908, 1558, 2620, 4373, 7217, 11845, 19350, 31518, 51228, 83145, 134813, 218441, 353782, 572798, 927204, 1500677, 2428635, 3930122, 6359656, 10290738, 16651417, 26943243, 43595815, 70540282, 114137392, 184679042, 298817877
Offset: 0

Views

Author

Clark Kimberling, Dec 12 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5;
a(2) = a(0) + a(1) + b(0)*b(2) = 11;
Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] b[n];
    j = 1; While[j < 10, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}];  (* A296271 *)
    Table[b[n], {n, 0, 20}]  (* complement *)

A296273 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)*b(n), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 3, 24, 57, 123, 236, 431, 757, 1298, 2187, 3641, 6010, 9861, 16111, 26244, 42661, 69247, 112288, 181955, 294705, 477166, 772446, 1250262, 2023410, 3274428, 5298650, 8573948, 13873528, 22448468, 36323052, 58772642, 95096884, 153870786, 248969002, 402841194
Offset: 0

Views

Author

Clark Kimberling, Dec 12 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5;
a(2) = a(0) + a(1) + b(1)*b(2) = 24;
Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n];
    j = 1; While[j < 10, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}];  (* A296273 *)
    Table[b[n], {n, 0, 20}]  (* complement *)

A296274 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)*b(n), where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 4, 20, 54, 116, 226, 414, 730, 1254, 2116, 3526, 5824, 9560, 15624, 25456, 41386, 67184, 108969, 176615, 286090, 463257, 749947, 1213854, 1964503, 3179113, 5144428, 8324411, 13469769, 21795172, 35265997, 57062291, 92329478, 149393029, 241723839, 391118274
Offset: 0

Views

Author

Clark Kimberling, Dec 12 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5;
a(2) = a(0) + a(1) + b(1)*b(2) = 20;
Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n];
    j = 1; While[j < 10, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}];  (* A296274 *)
    Table[b[n], {n, 0, 20}]  (* complement *)

A296275 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)*b(n), where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

2, 3, 25, 58, 125, 239, 436, 765, 1311, 2208, 3675, 6065, 9950, 16255, 26477, 43038, 69857, 113275, 183552, 297289, 481347, 779188, 1261159, 2041049, 3302964, 5344825, 8648659, 13994414, 22644065, 36639535, 59284722, 95925447, 155211429, 251138208, 406351043
Offset: 0

Views

Author

Clark Kimberling, Dec 12 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences.

Examples

			a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5;
a(2) = a(0) + a(1) + b(1)*b(2) = 25;
Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; b[2] = 5;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n];
    j = 1; While[j < 10, k = a[j] - j - 1;
    While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    Table[a[n], {n, 0, k}];  (* A296275 *)
    Table[b[n], {n, 0, 20}]  (* complement *)
Previous Showing 31-40 of 63 results. Next