cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 115 results. Next

A296872 Numbers whose base-6 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

48, 49, 54, 55, 56, 60, 61, 62, 63, 66, 67, 68, 69, 70, 90, 91, 92, 96, 97, 98, 99, 102, 103, 104, 105, 106, 132, 133, 134, 135, 138, 139, 140, 141, 142, 174, 175, 176, 177, 178, 264, 265, 270, 271, 272, 276, 277, 278, 279, 282, 283, 284, 285, 286, 288, 294
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296870-A296872 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-6 digits of 294 are 1,2,1,0; here #(pits) = 0 and #(peaks) = 1, so 294 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 6;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296870 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296871 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296872 *)

A296873 Numbers whose base-7 digits d(m), d(m-1), ..., d(0) have #(pits) = #(peaks); see Comments.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 73, 74, 75, 76, 81, 82
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296873-A296875 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-7 digits of 82 are 1,4,5; here #(pits) = 0 and #(peaks) = 0, so 82 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 7;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296873 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296874 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296875 *)

A296874 Numbers whose base-7 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

50, 51, 52, 53, 54, 55, 99, 100, 101, 102, 103, 104, 107, 108, 109, 110, 111, 148, 149, 150, 151, 152, 153, 156, 157, 158, 159, 160, 164, 165, 166, 167, 197, 198, 199, 200, 201, 202, 205, 206, 207, 208, 209, 213, 214, 215, 216, 221, 222, 223, 246, 247, 248
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296873-A296875 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-7 digits of 248 are 5,0,3; here #(pits) = 0 and #(peaks) = 0, so 248 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 7;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296873 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296874 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296875 *)

A296875 Numbers whose base-7 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

63, 64, 70, 71, 72, 77, 78, 79, 80, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 119, 120, 121, 126, 127, 128, 129, 133, 134, 135, 136, 137, 140, 141, 142, 143, 144, 145, 175, 176, 177, 178, 182, 183, 184, 185, 186, 189, 190, 191, 192, 193, 194, 231, 232, 233
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296873-A296875 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-7 digits of 233 are 4,5,2; here #(pits) = 0 and #(peaks) = 1, so 233 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 7;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296873 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296874 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296875 *)

A296876 Numbers whose base-8 digits d(m), d(m-1), ..., d(0) have #(pits) = #(peaks); see Comments.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 72, 73, 74
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296876-A296878 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-8 digits of 74 are 1,1,2; here #(pits) = 0 and #(peaks) = 0, so 74 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 8;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296876 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296877 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296878 *)

A296877 Numbers whose base-8 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

65, 66, 67, 68, 69, 70, 71, 129, 130, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 143, 193, 194, 195, 196, 197, 198, 199, 202, 203, 204, 205, 206, 207, 211, 212, 213, 214, 215, 257, 258, 259, 260, 261, 262, 263, 266, 267, 268, 269, 270, 271, 275, 276
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296876-A296878 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-8 digits of 276 are 4,2,4; here #(pits) = 1 and #(peaks) = 0, so 276 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 8;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296876 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296877 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296878 *)

A296878 Numbers whose base-8 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

80, 81, 88, 89, 90, 96, 97, 98, 99, 104, 105, 106, 107, 108, 112, 113, 114, 115, 116, 117, 120, 121, 122, 123, 124, 125, 126, 152, 153, 154, 160, 161, 162, 163, 168, 169, 170, 171, 172, 176, 177, 178, 179, 180, 181, 184, 185, 186, 187, 188, 189, 190, 224
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296876-A296878 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-8 digits of 224 are 3,4,0; here #(pits) = 0 and #(peaks) = 1, so 224 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 8;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296876 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296877 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296878 *)

A296880 Numbers whose base-9 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

82, 83, 84, 85, 86, 87, 88, 89, 163, 164, 165, 166, 167, 168, 169, 170, 173, 174, 175, 176, 177, 178, 179, 244, 245, 246, 247, 248, 249, 250, 251, 254, 255, 256, 257, 258, 259, 260, 264, 265, 266, 267, 268, 269, 325, 326, 327, 328, 329, 330, 331, 332, 335
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296879-A296881 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-9 digits of 335 are 4,1,2; here #(pits) = 1 and #(peaks) = 0, so 335 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 9;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296879 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296880 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296881 *)

A296881 Numbers whose base-9 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

99, 100, 108, 109, 110, 117, 118, 119, 120, 126, 127, 128, 129, 130, 135, 136, 137, 138, 139, 140, 144, 145, 146, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 159, 160, 189, 190, 191, 198, 199, 200, 201, 207, 208, 209, 210, 211, 216, 217, 218, 219, 220
Offset: 1

Views

Author

Clark Kimberling, Jan 10 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296879-A296881 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-9 digits of 220 are 2,6,4; here #(pits) = 0 and #(peaks) = 1, so 220 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 9;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296879 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296880 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296881 *)

A296886 Numbers whose base-11 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 255, 256, 257, 258, 259, 260, 261, 262, 263, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 376, 377, 378, 379, 380, 381, 382, 383, 384, 388, 389, 390, 391
Offset: 1

Views

Author

Clark Kimberling, Jan 10 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296885-A296887 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-11 digits of 30868 are 2,1,2,1,2; here #(pits) = 2 and #(peaks) = 1, so 30368 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 11;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296885 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296886 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296887 *)
Previous Showing 71-80 of 115 results. Next