cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 115 results. Next

A296887 Numbers whose base-11 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

143, 144, 154, 155, 156, 165, 166, 167, 168, 176, 177, 178, 179, 180, 187, 188, 189, 190, 191, 192, 198, 199, 200, 201, 202, 203, 204, 209, 210, 211, 212, 213, 214, 215, 216, 220, 221, 222, 223, 224, 225, 226, 227, 228, 231, 232, 233, 234, 235, 236, 237, 238
Offset: 1

Views

Author

Clark Kimberling, Jan 10 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296885-A296887 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-11 digits of 17447 are 1,2,1,2,1; here #(pits) = 1 and #(peaks) = 2, so 17447 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 11;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296885 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296886 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296887 *)

A296889 Numbers whose base-12 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 446, 447, 448, 449, 450, 451, 452, 453, 454
Offset: 1

Views

Author

Clark Kimberling, Jan 10 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296888-A296890 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-12 digits of 43502 are 2,1,2,1,2; here #(pits) = 2 and #(peaks) = 1, so 43502 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 12;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296888 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296889 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296890 *)

A296890 Numbers whose base-12 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

168, 169, 180, 181, 182, 192, 193, 194, 195, 204, 205, 206, 207, 208, 216, 217, 218, 219, 220, 221, 228, 229, 230, 231, 232, 233, 234, 240, 241, 242, 243, 244, 245, 246, 247, 252, 253, 254, 255, 256, 257, 258, 259, 260, 264, 265, 266, 267, 268, 269, 270, 271
Offset: 1

Views

Author

Clark Kimberling, Jan 10 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296888-A296890 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-12 digits of 24361 are 1,2,1,2,1; here #(pits) = 1 and #(peaks) = 2, so 24361 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 12;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296888 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296889 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296890 *)

A296892 Numbers whose base-13 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 522, 523, 524, 525, 526
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296891-A296894 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-13 digits of 59672 are 2,1,2,1,2; here #(pits) = 2 and #(peaks) = 1, so 59672 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 13;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296891 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]    (* A296892 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]    (* A296893 *)

A296893 Numbers whose base-13 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

195, 196, 208, 209, 210, 221, 222, 223, 224, 234, 235, 236, 237, 238, 247, 248, 249, 250, 251, 252, 260, 261, 262, 263, 264, 265, 266, 273, 274, 275, 276, 277, 278, 279, 280, 286, 287, 288, 289, 290, 291, 292, 293, 294, 299, 300, 301, 302, 303, 304, 305, 306
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296891-A296894 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-13 digits of 33151 are 1,2,1,2,1; here #(pits) = 1 and #(peaks) = 2, so 33151 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 13;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296891 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296892 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296893 *)

A296895 Numbers whose base-14 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 604
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296894-A296896 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-14 digits of 79984 are 2,1,2,1,2; here #(pits) = 2 and #(peaks) = 1, so 79984 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 14;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296894 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296895 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296896 *)

A296896 Numbers whose base-14 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

224, 225, 238, 239, 240, 252, 253, 254, 255, 266, 267, 268, 269, 270, 280, 281, 282, 283, 284, 285, 294, 295, 296, 297, 298, 299, 300, 308, 309, 310, 311, 312, 313, 314, 315, 322, 323, 324, 325, 326, 327, 328, 329, 330, 336, 337, 338, 339, 340, 341, 342, 343
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296894-A296896 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-14 digits of 44129 are 1,2,1,2,1; here #(pits) = 1 and #(peaks) = 2, so 44129 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 14;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296894 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296895 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296896 *)

A296898 Numbers whose base-15 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296897-A296899 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-15 digits of 105092 are 2,1,2,1,2; here #(pits) = 2 and #(peaks) = 1, so 105092 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 15;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296897 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296898 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296899 *)

A296899 Numbers whose base-15 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

255, 256, 270, 271, 272, 285, 286, 287, 288, 300, 301, 302, 303, 304, 315, 316, 317, 318, 319, 320, 330, 331, 332, 333, 334, 335, 336, 345, 346, 347, 348, 349, 350, 351, 352, 360, 361, 362, 363, 364, 365, 366, 367, 368, 375, 376, 377, 378, 379, 380, 381, 382
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296897-A296899 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-15 digits of 57631 are 1,2,1,2,1; here #(pits) = 1 and #(peaks) = 2, so 57631 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 15;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296897 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296898 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296899 *)

A296901 Numbers whose base-16 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 769, 770, 771, 772, 773, 774, 775, 776
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296900-A296902 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-16 digits of 135698 are 2,1,2,1,2; here #(pits) = 2 and #(peaks) = 1, so 135698 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 16;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296900 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296901 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296902 *)
Previous Showing 81-90 of 115 results. Next