cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 68 results. Next

A296878 Numbers whose base-8 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

80, 81, 88, 89, 90, 96, 97, 98, 99, 104, 105, 106, 107, 108, 112, 113, 114, 115, 116, 117, 120, 121, 122, 123, 124, 125, 126, 152, 153, 154, 160, 161, 162, 163, 168, 169, 170, 171, 172, 176, 177, 178, 179, 180, 181, 184, 185, 186, 187, 188, 189, 190, 224
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296876-A296878 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-8 digits of 224 are 3,4,0; here #(pits) = 0 and #(peaks) = 1, so 224 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 8;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296876 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296877 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296878 *)

A296880 Numbers whose base-9 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

82, 83, 84, 85, 86, 87, 88, 89, 163, 164, 165, 166, 167, 168, 169, 170, 173, 174, 175, 176, 177, 178, 179, 244, 245, 246, 247, 248, 249, 250, 251, 254, 255, 256, 257, 258, 259, 260, 264, 265, 266, 267, 268, 269, 325, 326, 327, 328, 329, 330, 331, 332, 335
Offset: 1

Views

Author

Clark Kimberling, Jan 09 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296879-A296881 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-9 digits of 335 are 4,1,2; here #(pits) = 1 and #(peaks) = 0, so 335 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 9;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296879 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296880 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296881 *)

A296881 Numbers whose base-9 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

99, 100, 108, 109, 110, 117, 118, 119, 120, 126, 127, 128, 129, 130, 135, 136, 137, 138, 139, 140, 144, 145, 146, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 159, 160, 189, 190, 191, 198, 199, 200, 201, 207, 208, 209, 210, 211, 216, 217, 218, 219, 220
Offset: 1

Views

Author

Clark Kimberling, Jan 10 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296879-A296881 partition the natural numbers. See the guides at A296882 and A296712.

Examples

			The base-9 digits of 220 are 2,6,4; here #(pits) = 0 and #(peaks) = 1, so 220 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 9;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296879 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296880 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296881 *)

A296886 Numbers whose base-11 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 255, 256, 257, 258, 259, 260, 261, 262, 263, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 376, 377, 378, 379, 380, 381, 382, 383, 384, 388, 389, 390, 391
Offset: 1

Views

Author

Clark Kimberling, Jan 10 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296885-A296887 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-11 digits of 30868 are 2,1,2,1,2; here #(pits) = 2 and #(peaks) = 1, so 30368 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 11;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296885 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296886 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296887 *)

A296887 Numbers whose base-11 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

143, 144, 154, 155, 156, 165, 166, 167, 168, 176, 177, 178, 179, 180, 187, 188, 189, 190, 191, 192, 198, 199, 200, 201, 202, 203, 204, 209, 210, 211, 212, 213, 214, 215, 216, 220, 221, 222, 223, 224, 225, 226, 227, 228, 231, 232, 233, 234, 235, 236, 237, 238
Offset: 1

Views

Author

Clark Kimberling, Jan 10 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296885-A296887 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-11 digits of 17447 are 1,2,1,2,1; here #(pits) = 1 and #(peaks) = 2, so 17447 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 11;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296885 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296886 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296887 *)

A296889 Numbers whose base-12 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 446, 447, 448, 449, 450, 451, 452, 453, 454
Offset: 1

Views

Author

Clark Kimberling, Jan 10 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296888-A296890 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-12 digits of 43502 are 2,1,2,1,2; here #(pits) = 2 and #(peaks) = 1, so 43502 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 12;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296888 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296889 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296890 *)

A296890 Numbers whose base-12 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

168, 169, 180, 181, 182, 192, 193, 194, 195, 204, 205, 206, 207, 208, 216, 217, 218, 219, 220, 221, 228, 229, 230, 231, 232, 233, 234, 240, 241, 242, 243, 244, 245, 246, 247, 252, 253, 254, 255, 256, 257, 258, 259, 260, 264, 265, 266, 267, 268, 269, 270, 271
Offset: 1

Views

Author

Clark Kimberling, Jan 10 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296888-A296890 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-12 digits of 24361 are 1,2,1,2,1; here #(pits) = 1 and #(peaks) = 2, so 24361 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 12;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296888 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296889 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296890 *)

A296892 Numbers whose base-13 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 522, 523, 524, 525, 526
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296891-A296894 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-13 digits of 59672 are 2,1,2,1,2; here #(pits) = 2 and #(peaks) = 1, so 59672 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 13;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296891 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]    (* A296892 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]    (* A296893 *)

A296893 Numbers whose base-13 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

195, 196, 208, 209, 210, 221, 222, 223, 224, 234, 235, 236, 237, 238, 247, 248, 249, 250, 251, 252, 260, 261, 262, 263, 264, 265, 266, 273, 274, 275, 276, 277, 278, 279, 280, 286, 287, 288, 289, 290, 291, 292, 293, 294, 299, 300, 301, 302, 303, 304, 305, 306
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296891-A296894 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-13 digits of 33151 are 1,2,1,2,1; here #(pits) = 1 and #(peaks) = 2, so 33151 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 13;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296891 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296892 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296893 *)

A296895 Numbers whose base-14 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 604
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296894-A296896 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-14 digits of 79984 are 2,1,2,1,2; here #(pits) = 2 and #(peaks) = 1, so 79984 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 14;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296894 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296895 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296896 *)
Previous Showing 31-40 of 68 results. Next