cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 68 results. Next

A296896 Numbers whose base-14 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

224, 225, 238, 239, 240, 252, 253, 254, 255, 266, 267, 268, 269, 270, 280, 281, 282, 283, 284, 285, 294, 295, 296, 297, 298, 299, 300, 308, 309, 310, 311, 312, 313, 314, 315, 322, 323, 324, 325, 326, 327, 328, 329, 330, 336, 337, 338, 339, 340, 341, 342, 343
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296894-A296896 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-14 digits of 44129 are 1,2,1,2,1; here #(pits) = 1 and #(peaks) = 2, so 44129 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 14;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296894 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296895 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296896 *)

A296898 Numbers whose base-15 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296897-A296899 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-15 digits of 105092 are 2,1,2,1,2; here #(pits) = 2 and #(peaks) = 1, so 105092 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 15;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296897 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296898 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296899 *)

A296899 Numbers whose base-15 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

255, 256, 270, 271, 272, 285, 286, 287, 288, 300, 301, 302, 303, 304, 315, 316, 317, 318, 319, 320, 330, 331, 332, 333, 334, 335, 336, 345, 346, 347, 348, 349, 350, 351, 352, 360, 361, 362, 363, 364, 365, 366, 367, 368, 375, 376, 377, 378, 379, 380, 381, 382
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296897-A296899 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-15 digits of 57631 are 1,2,1,2,1; here #(pits) = 1 and #(peaks) = 2, so 57631 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 15;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296897 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296898 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296899 *)

A296901 Numbers whose base-16 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 769, 770, 771, 772, 773, 774, 775, 776
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296900-A296902 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-16 digits of 135698 are 2,1,2,1,2; here #(pits) = 2 and #(peaks) = 1, so 135698 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 16;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296900 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296901 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296902 *)

A296902 Numbers whose base-16 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

288, 289, 304, 305, 306, 320, 321, 322, 323, 336, 337, 338, 339, 340, 352, 353, 354, 355, 356, 357, 368, 369, 370, 371, 372, 373, 374, 384, 385, 386, 387, 388, 389, 390, 391, 400, 401, 402, 403, 404, 405, 406, 407, 408, 416, 417, 418, 419, 420, 421, 422, 423
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296900-A296902 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-16 digits of 74017 are 1,2,1,2,1; here #(pits) = 1 and #(peaks) = 2, so 74017 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 16;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296900 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296901 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296902 *)

A296904 Numbers whose base-20 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296903..A296905 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-20 digits of 328822 are 2,1,2,1,2; here #(pits) = 2 and #(peaks) = 1, so 328822 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 20;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296903 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296904 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296905 *)

A296905 Numbers whose base-20 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

440, 441, 460, 461, 462, 480, 481, 482, 483, 500, 501, 502, 503, 504, 520, 521, 522, 523, 524, 525, 540, 541, 542, 543, 544, 545, 546, 560, 561, 562, 563, 564, 565, 566, 567, 580, 581, 582, 583, 584, 585, 586, 587, 588, 600, 601, 602, 603, 604, 605, 606, 607
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296903..A296905 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-20 digits of 176441 are 1,2,1,2,1; here #(pits) = 1 and #(peaks) = 2, so 176441 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 20;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296903 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296904 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296905 *)

Extensions

b-file replaced by Clark Kimberling, Feb 27 2018

A296907 Numbers whose base-60 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

3601, 3602, 3603, 3604, 3605, 3606, 3607, 3608, 3609, 3610, 3611, 3612, 3613, 3614, 3615, 3616, 3617, 3618, 3619, 3620, 3621, 3622, 3623, 3624, 3625, 3626, 3627, 3628, 3629, 3630, 3631, 3632, 3633, 3634, 3635, 3636, 3637, 3638, 3639, 3640, 3641, 3642, 3643
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296906..A296908 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-60 digits of 26143262 are 2,1,2,1,2; here #(pits) = 2 and #(peaks) = 1, so 26143262 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 60;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296906 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296907 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296908 *)

A296908 Numbers whose base-60 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.

Original entry on oeis.org

3720, 3721, 3780, 3781, 3782, 3840, 3841, 3842, 3843, 3900, 3901, 3902, 3903, 3904, 3960, 3961, 3962, 3963, 3964, 3965, 4020, 4021, 4022, 4023, 4024, 4025, 4026, 4080, 4081, 4082, 4083, 4084, 4085, 4086, 4087, 4140, 4141, 4142, 4143, 4144, 4145, 4146, 4147
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296906..A296908 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-60 digits of 13395721 are 1,2,1,2,1; here #(pits) = 1 and #(peaks) = 2, so 13395721 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 60;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296906 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296907 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296908 *)

A296883 Numbers whose base-10 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.

Original entry on oeis.org

101, 102, 103, 104, 105, 106, 107, 108, 109, 201, 202, 203, 204, 205, 206, 207, 208, 209, 212, 213, 214, 215, 216, 217, 218, 219, 301, 302, 303, 304, 305, 306, 307, 308, 309, 312, 313, 314, 315, 316, 317, 318, 319, 323, 324, 325, 326, 327, 328, 329, 401, 402
Offset: 1

Views

Author

Clark Kimberling, Jan 10 2018

Keywords

Comments

A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296882-A296883 partition the natural numbers. See the guides at A296712 and A296882.

Examples

			The base-10 digits of 21212 are 2,1,2,1,2; here #(pits) = 2 and #(peaks) = 1, so 21212 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    z = 200; b = 10;
    d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
    Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &]  (* A296882 *)
    Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &]   (* A296883 *)
    Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &]   (* A296884 *)
Previous Showing 41-50 of 68 results. Next