cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A305613 Numbers whose multiset of prime factors is not knapsack.

Original entry on oeis.org

30, 60, 70, 72, 84, 90, 120, 140, 144, 150, 168, 180, 210, 216, 240, 252, 270, 280, 286, 288, 300, 308, 330, 336, 350, 360, 378, 390, 420, 432, 440, 450, 480, 490, 495, 504, 510, 525, 528, 540, 560, 570, 572, 576, 588, 594, 600, 616, 630, 646, 648, 660, 672
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2018

Keywords

Comments

A multiset of positive integers is knapsack if every distinct submultiset has a different sum.

Examples

			30 = 2 * 3 * 5 is not knapsack because 2 + 3 = 5.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],DivisorSigma[0,#]=!=Length[Union[Total/@Subsets[Join@@Cases[FactorInteger[#],{p_,k_}:>Table[p,{k}]]]]]&]

A316361 FDH numbers of strict integer partitions such that not every distinct subset has a different average.

Original entry on oeis.org

24, 56, 60, 110, 120, 135, 140, 168, 210, 216, 224, 264, 270, 273, 280, 308, 312, 315, 330, 342, 360, 378, 384, 408, 420, 440, 456, 459, 480, 504, 520, 540, 546, 550, 552, 576, 585, 594, 600, 616, 630, 660, 672, 693, 696, 702, 728, 744, 756, 759, 760, 770, 780
Offset: 1

Views

Author

Gus Wiseman, Jun 30 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1,...,y_k) is f(y_1)*...*f(y_k).

Examples

			210 is the FDH number of (5,4,2,1), and the subsets {1,5}, and {2,4} have the same average, so 210 belongs to the data.
		

Crossrefs

Programs

  • Mathematica
    nn=1000;
    FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Select[Range[nn],!UnsameQ@@Mean/@Union[Subsets[FDfactor[#]/.FDrules]]&]

A316401 Number of strict integer partitions of n that are not knapsack (not every subset has a different sum) but every subset has a different average.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 3, 1, 3, 2, 4, 2, 6, 6, 11, 9, 9, 10, 20, 16, 18, 17, 27, 24, 31, 29, 43, 31, 43, 40, 59, 52, 58, 61, 83, 68, 93, 80, 124, 99, 120, 109, 145, 151, 185, 160, 232, 163, 257, 229, 314, 280, 286, 310, 427, 385, 513, 333, 596
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2018

Keywords

Examples

			The a(22) = 11 partitions:
(11,6,5), (11,7,4), (11,8,3), (11,9,2), (11,10,1),
(11,5,4,2), (11,6,3,2), (11,8,2,1), (12,5,3,2), (12,5,4,1), (14,4,3,1).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!UnsameQ@@Total/@Union[Subsets[#]]&&UnsameQ@@Mean/@Union[Subsets[#]]&]],{n,20}]
Previous Showing 11-13 of 13 results.