cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A304918 Number of labeled antichain hyperforests spanning a subset of {1,...,n}.

Original entry on oeis.org

1, 2, 5, 18, 104, 943, 12133, 203038, 4177755, 101922814, 2874725600, 92009680557, 3294276613933, 130446181101044, 5660055256165565, 267044522107706072, 13611243187516647324, 745329728016955480687, 43636132793651444511809, 2719977663069107176768790
Offset: 0

Views

Author

Gus Wiseman, May 21 2018

Keywords

Examples

			The a(3) = 18 hyperforests are the following:
{{1,2,3}}      {{2,3}}    {{1,3}}    {{1,2}}    {{3}}   {{2}}   {{1}}   {}
{{1,3},{2,3}}  {{2},{3}}  {{1},{3}}  {{1},{2}}
{{1,2},{2,3}}
{{1,2},{1,3}}
{{3},{1,2}}
{{2},{1,3}}
{{1},{2,3}}
{{1},{2},{3}}
		

Crossrefs

Formula

Binomial transform of A134954.

A305028 Number of unlabeled blobs spanning n vertices without singleton edges.

Original entry on oeis.org

1, 0, 1, 2, 10, 128
Offset: 0

Views

Author

Gus Wiseman, May 24 2018

Keywords

Comments

A blob is a connected antichain of finite sets that cannot be capped by a hypertree with more than one branch.

Examples

			Non-isomorphic representatives of the a(4) = 10 blobs:
  {{1,2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,3},{1,4},{2,3,4}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

A329632 Number of connected integer partitions of n whose distinct parts are pairwise indivisible.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 5, 1, 6, 4, 6, 1, 9, 2, 10, 6, 13, 3, 15, 6, 18, 8, 22, 9, 29, 10, 30, 20, 40, 22, 48, 24, 57, 36, 68
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2019

Keywords

Comments

Given an integer partition y of length k, let G(y) be the simple labeled graph with vertices {1..k} and edges between any two vertices i, j such that GCD(y_i, y_j) > 1. For example, G(6,14,15,35) is a 4-cycle. A partition y is said to be connected if G(y) is a connected graph.

Examples

			The a(n) partitions for n = 1, 4, 6, 10, 12, 14:
  (1)  (4)    (6)      (10)         (12)           (14)
       (2,2)  (3,3)    (5,5)        (6,6)          (7,7)
              (2,2,2)  (6,4)        (4,4,4)        (8,6)
                       (2,2,2,2,2)  (3,3,3,3)      (10,4)
                                    (2,2,2,2,2,2)  (6,4,4)
                                                   (2,2,2,2,2,2,2)
		

Crossrefs

The Heinz numbers of these partitions are given by A329559.
The strict version is A304717.
Connected partitions are A218970.
Pairwise indivisible partitions are A305148.

Programs

  • Mathematica
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],stableQ[#,Divisible]&&Length[zsm[#]]<=1&]],{n,0,30}]

A304919 Number of labeled hyperforests spanning {1,...,n} and allowing singleton edges.

Original entry on oeis.org

1, 1, 5, 45, 665, 14153, 399421, 14137301, 603647601, 30231588689, 1738713049013, 112976375651901, 8186616300733321, 654642360222892057, 57267075701210437229, 5440407421313402397541, 557802495215406348358113, 61393838258161429159571873, 7220049654850517272144419941, 903546142463635579042416518989
Offset: 0

Views

Author

Gus Wiseman, May 21 2018

Keywords

Examples

			The a(2) = 5 hyperforests are the following:
{{1,2}}
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
		

Crossrefs

Formula

Inverse binomial transform of A134956.
Previous Showing 11-14 of 14 results.