A306446 a(n) is the number of connected components in the Fermi-Dirac factorization of n (see Comments for precise definition).
0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 2
Offset: 1
Keywords
Examples
For n = 67!: - the Fermi-Dirac primes p^(2^k) in F(67!) can be depicted as: 6|@ 5| 4| @ 3| @@@ 2| @@ @@ 1| @@@@ @@@@@ 0| @@ @@@ @@@@@@@@ ---+------------------- k/p| 111122334445566 |2357137939171373917 - G(67!) has 4 connected components: 6|A 5| 4| B 3| BBB 2| BB BB 1| BBBB CCCCC 0| BB CCC DDDDDDDD ---+------------------- k/p| 111122334445566 |2357137939171373917 - hence a(67!) = 4.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000
- OEIS Wiki, "Fermi-Dirac representation" of n
- Rémy Sigrist, PARI program for A306446
- Wikipedia, Connected component (graph theory)
Crossrefs
A329050 corresponds to the array depicted in the first example, with prime(n+1) = p.
Programs
-
PARI
See Links section.
Formula
If m and n are coprime, then a(m * n) <= a(m) + a(n).
a(p^k) = A069010(k) for any k >= 0 and any prime number p.
a(n) <= A064547(n).
a(A002110(k)) = 1 for any k > 0.
a(A066205(k)) = k for any k > 0.
From Peter Munn, Jan 05 2021: (Start)
(1) a(1) = 0, otherwise a(n) > 0.
For any k, n > 0:
(2a) a(A050376(k)) = 1;
(2b) a(A059896(n,k)) <= a(n) + a(k);
(2c) a(A059896(n,k)) = a(n) + a(k) if and only if A059895(A306697(n,24), k) = 1 and A059895(n, A306697(k,24)) = 1.
For any n > 0, write n = j * k^2 * m^4, j, k squarefree, m > 0:
(3a) a(n) <= a(j) + a(k) + a(m);
(3b) if gcd(j, k) = 1, a(n) = a(j) + a(n/j);
(3c) if gcd(j, k) = j, a(n) = a(n/j);
(3d) if gcd(k, m) = 1, a(n) = a(n/m^4) + a(m^4);
(3e) if gcd(j, k) = k and gcd(k, m) = 1, a(n) = a(j) + a(m).
For any n > 0:
For any odd n > 0 (with k >= 0, m >= 0):
(5) If n = 9^k * (6m + 1) or n = 9^k * (6m + 5) then a(2n) = a(n) + 1; otherwise a(2n) = a(n).
(End)
Comments