cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A306446 a(n) is the number of connected components in the Fermi-Dirac factorization of n (see Comments for precise definition).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Rémy Sigrist, Feb 16 2019

Keywords

Comments

For any n > 0:
- let F(n) be the set of distinct Fermi-Dirac primes (A050376) with product n,
- let G(n) be the undirected graph with vertices F(n) and the following connection rules: for any k >= 0 and any pair of consecutive prime numbers (p, q):
- p^(2^k) and p^(2^(k+1)) are connected,
- p^(2^k) and q^(2^k) are connected,
- a(n) is the number of connected components in G(n).
The sequence may be specified algebraically by formulas (1) to (2c) in my contemporary entry in the formula section. - Peter Munn, Jan 05 2021

Examples

			For n = 67!:
- the Fermi-Dirac primes p^(2^k) in F(67!) can be depicted as:
    6|@
    5|
    4| @
    3| @@@
    2| @@ @@
    1| @@@@ @@@@@
    0| @@  @@@   @@@@@@@@
  ---+-------------------
  k/p|    111122334445566
     |2357137939171373917
- G(67!) has 4 connected components:
    6|A
    5|
    4| B
    3| BBB
    2| BB BB
    1| BBBB CCCCC
    0| BB  CCC   DDDDDDDD
  ---+-------------------
  k/p|    111122334445566
     |2357137939171373917
- hence a(67!) = 4.
		

Crossrefs

A050376, A059895, A059896, A306697 are used in a formula defining this sequence.
A329050 corresponds to the array depicted in the first example, with prime(n+1) = p.
The formula section details how the sequence maps the terms of A002110, A066205.
A003961, A225546, A340346 are used to express relationship between terms of this sequence.

Programs

  • PARI
    See Links section.

Formula

If m and n are coprime, then a(m * n) <= a(m) + a(n).
a(p^k) = A069010(k) for any k >= 0 and any prime number p.
a(n) <= A064547(n).
a(A002110(k)) = 1 for any k > 0.
a(A066205(k)) = k for any k > 0.
From Peter Munn, Jan 05 2021: (Start)
(1) a(1) = 0, otherwise a(n) > 0.
For any k, n > 0:
(2a) a(A050376(k)) = 1;
(2b) a(A059896(n,k)) <= a(n) + a(k);
(2c) a(A059896(n,k)) = a(n) + a(k) if and only if A059895(A306697(n,24), k) = 1 and A059895(n, A306697(k,24)) = 1.
For any n > 0, write n = j * k^2 * m^4, j, k squarefree, m > 0:
(3a) a(n) <= a(j) + a(k) + a(m);
(3b) if gcd(j, k) = 1, a(n) = a(j) + a(n/j);
(3c) if gcd(j, k) = j, a(n) = a(n/j);
(3d) if gcd(k, m) = 1, a(n) = a(n/m^4) + a(m^4);
(3e) if gcd(j, k) = k and gcd(k, m) = 1, a(n) = a(j) + a(m).
For any n > 0:
(4a) a(n^2) = a(A003961(n)) = a(A225546(n)) = a(n);
(4b) a(n) = a(A340346(n)) + a(n/A340346(n)).
For any odd n > 0 (with k >= 0, m >= 0):
(5) If n = 9^k * (6m + 1) or n = 9^k * (6m + 5) then a(2n) = a(n) + 1; otherwise a(2n) = a(n).
(End)
Previous Showing 11-11 of 11 results.