A335384 Order of the finite groups GL(m,q) [or GL_m(q)] in increasing order as q runs through the prime powers.
6, 48, 168, 180, 480, 2016, 3528, 5760, 11232, 13200, 20160, 26208, 61200, 78336, 123120, 181440, 267168, 374400, 511056, 682080, 892800, 1014816, 1488000, 1822176, 2755200, 3337488, 4773696, 5644800, 7738848, 9999360, 11908560, 13615200, 16511040, 19845936, 24261120, 25048800, 28003968
Offset: 1
Keywords
Examples
a(1) = #GL(2,2) = (2^2-1)*(2^2-2) = 3*2 = 6 and the 6 elements of GL(2,2) that is isomorphic to S_3 are the 6 following 2 X 2 invertible matrices with entries in F_2: (1 0) (1 1) (1 0) (0 1) (0 1) (1 1) (0 1) , (0 1) , (1 1) , (1 0) , (1 1) , (1 0). a(2) = #GL(2,3) = (3^2-1)*(3^2-3) = 8*6 = 48. a(3) = #GL(3,2) = (2^3-1)*(2^3-2)*(2^3-2^2) = 168.
References
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
- Daniel Perrin, Cours d'Algèbre, Maths Agreg, Ellipses, 1996, pages 95-115.
Links
- Wikipedia, General linear group
Crossrefs
Formula
#GL(m,q) = Product_{k=0..m-1}(q^m-q^k).
Comments