A319119
Number of multimin tree-factorizations of Heinz numbers of integer partitions of n.
Original entry on oeis.org
1, 3, 9, 37, 173, 921, 5185, 30497, 184469, 1140413, 7170085, 45704821
Offset: 1
The a(3) = 9 multimin tree-factorizations:
5, 6, 8,
(2*3), (2*4), (4*2), (2*2*2),
(2*(2*2)), ((2*2)*2).
Or as series-reduced plane trees of multisets:
3, 12, 111,
(1,2), (1,11), (11,1), (1,1,1),
(1,(1,1)), ((1,1),1).
Cf.
A001055,
A020639,
A196545,
A255397,
A281113,
A281118,
A281119,
A295279,
A317545,
A317546,
A319118.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
mmftrees[n_]:=Prepend[Join@@(Tuples[mmftrees/@#]&/@Select[Join@@Permutations/@Select[facs[n],Length[#]>1&],OrderedQ[FactorInteger[#][[1,1]]&/@#]&]),n];
Table[Sum[Length[mmftrees[k]],{k,Times@@Prime/@#&/@IntegerPartitions[n]}],{n,7}]
A319121
Number of complete multimin tree-factorizations of Heinz numbers of integer partitions of n.
Original entry on oeis.org
1, 2, 5, 18, 74, 344, 1679, 8548, 44690, 238691, 1295990, 7132509
Offset: 1
The a(3) = 5 trees are: 5, (2*3), (2*2*2), (2*(2*2)), ((2*2)*2).
The a(4) = 18 trees (normalized with prime(n) -> n):
4,
(13), (22), (112), (1111),
(1(12)), ((12)1), ((11)2),
(11(11)), (1(11)1), ((11)11), (1(111)), ((111)1), ((11)(11)),
(1(1(11))), (1((11)1)), ((1(11))1), (((11)1)1).
Cf.
A000311,
A001003,
A001055,
A020639,
A255397,
A281113,
A281118,
A281119,
A295281,
A317545,
A317546,
A318577,
A319118,
A319119.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
mmftrees[n_]:=Prepend[Join@@(Tuples[mmftrees/@#]&/@Select[Join@@Permutations/@Select[facs[n],Length[#]>1&],OrderedQ[FactorInteger[#][[1,1]]&/@#]&]),n];
Table[Sum[Length[Select[mmftrees[k],FreeQ[#,_Integer?(!PrimeQ[#]&)]&]],{k,Times@@Prime/@#&/@IntegerPartitions[n]}],{n,10}]
Comments