cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A319763 Number of non-isomorphic strict intersecting multiset partitions (sets of multisets) of weight n with empty intersection.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 2, 12, 46, 181
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

A multiset partition is intersecting if no two parts are disjoint. The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(6) = 1 through a(8) = 12 multiset partitions:
6: {{1,2},{1,3},{2,3}}
7: {{1,2},{1,3},{2,3,3}}
   {{1,3},{1,4},{2,3,4}}
8: {{1,2},{1,3},{2,2,3,3}}
   {{1,2},{1,3},{2,3,3,3}}
   {{1,2},{1,3},{2,3,4,4}}
   {{1,2},{1,3,3},{2,3,3}}
   {{1,2},{1,3,4},{2,3,4}}
   {{1,3},{1,4},{2,3,4,4}}
   {{1,3},{1,1,2},{2,3,3}}
   {{1,3},{1,2,2},{2,3,3}}
   {{1,4},{1,5},{2,3,4,5}}
   {{2,3},{1,2,4},{3,4,4}}
   {{2,4},{1,2,3},{3,4,4}}
   {{2,4},{1,2,5},{3,4,5}}
		

Crossrefs

A319764 Number of non-isomorphic intersecting set systems of weight n with empty intersection.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 1, 3, 8, 18
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

A set system is a finite set of finite nonempty sets. It is intersecting if no two parts are disjoint. The weight of a set system is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(6) = 1 through a(9) = 8 set systems:
6: {{1,2},{1,3},{2,3}}
7: {{1,3},{1,4},{2,3,4}}
8: {{1,2},{1,3,4},{2,3,4}}
   {{1,4},{1,5},{2,3,4,5}}
   {{2,4},{1,2,5},{3,4,5}}
9: {{1,3},{1,4,5},{2,3,4,5}}
   {{1,5},{1,6},{2,3,4,5,6}}
   {{2,5},{1,2,6},{3,4,5,6}}
   {{1,2,3},{2,4,5},{3,4,5}}
   {{1,3,5},{2,3,6},{4,5,6}}
   {{1,2},{1,3},{1,4},{2,3,4}}
   {{1,2},{1,3},{2,3},{1,2,3}}
   {{1,3},{1,4},{3,4},{2,3,4}}
		

Crossrefs

A319775 Number of non-isomorphic multiset partitions of weight n with empty intersection and no part containing all the vertices.

Original entry on oeis.org

1, 0, 1, 4, 16, 52, 185, 625, 2226, 7840, 28405
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(4) = 16 multiset partitions:
2: {{1},{2}}
3: {{1},{2,2}}
   {{1},{2,3}}
   {{1},{2},{2}}
   {{1},{2},{3}}
4: {{1},{2,2,2}}
   {{1},{2,3,3}}
   {{1},{2,3,4}}
   {{1,1},{2,2}}
   {{1,2},{3,3}}
   {{1,2},{3,4}}
   {{1},{1},{2,2}}
   {{1},{1},{2,3}}
   {{1},{2},{2,2}}
   {{1},{2},{3,3}}
   {{1},{2},{3,4}}
   {{1},{3},{2,3}}
   {{1},{1},{2},{2}}
   {{1},{2},{2},{2}}
   {{1},{2},{3},{3}}
   {{1},{2},{3},{4}}
		

Crossrefs

A319782 Number of non-isomorphic intersecting strict T_0 multiset partitions of weight n.

Original entry on oeis.org

1, 1, 1, 4, 7, 17, 42, 98, 248, 631, 1657
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

A multiset partition is intersecting iff no two parts are disjoint. The weight of a multiset partition is the sum of sizes of its parts. The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. The T_0 condition means the dual is strict.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 7 multiset partitions:
1: {{1}}
2: {{1,1}}
3: {{1,1,1}}
   {{1,2,2}}
   {{1},{1,1}}
   {{2},{1,2}}
4: {{1,1,1,1}}
   {{1,2,2,2}}
   {{1},{1,1,1}}
   {{1},{1,2,2}}
   {{2},{1,2,2}}
   {{1,2},{2,2}}
   {{1,3},{2,3}}
		

Crossrefs

A319783 Number of set systems spanning n vertices with empty intersection whose dual is also a set system with empty intersection.

Original entry on oeis.org

1, 0, 0, 1, 203, 490572
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.

Examples

			The a(3) = 1 set system is {{1,2},{1,3},{2,3}}.
		

Crossrefs

A319784 Number of non-isomorphic intersecting T_0 set systems of weight n.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 3, 5, 7, 14, 25
Offset: 0

Views

Author

Gus Wiseman, Sep 27 2018

Keywords

Comments

A multiset partition is intersecting if no two parts are disjoint. The weight of a multiset partition is the sum of sizes of its parts. The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. The T_0 condition means the dual is strict.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(8) = 7 multiset partitions:
1: {{1}}
3: {{2},{1,2}}
4: {{1,3},{2,3}}
5: {{3},{1,3},{2,3}}
6: {{3},{2,3},{1,2,3}}
   {{1,2},{1,3},{2,3}}
   {{1,4},{2,4},{3,4}}
7: {{4},{1,3,4},{2,3,4}}
   {{1,3},{1,4},{2,3,4}}
   {{1,3},{2,3},{1,2,3}}
   {{1,4},{3,4},{2,3,4}}
   {{4},{1,4},{2,4},{3,4}}
8: {{1,5},{2,4,5},{3,4,5}}
   {{2,4},{3,4},{1,2,3,4}}
   {{2,4},{1,2,5},{3,4,5}}
   {{2,4},{1,3,4},{2,3,4}}
   {{3},{1,3},{2,3},{1,2,3}}
   {{4},{1,4},{3,4},{2,3,4}}
   {{1,5},{2,5},{3,5},{4,5}}
		

Crossrefs

Previous Showing 11-16 of 16 results.