cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 50 results. Next

A325422 Complement of A077477.

Original entry on oeis.org

3, 4, 5, 7, 13, 17, 19, 21, 23, 25, 28, 29, 31, 33, 34, 37, 41, 43, 45, 46, 49, 53, 55, 61, 65, 67, 71, 73, 77, 79, 81, 82, 85, 89, 91, 95, 97, 101, 103, 105, 106, 109, 113, 115, 117, 118, 119, 121, 125, 127, 129, 133, 137, 139, 141, 142, 145, 149, 151, 153
Offset: 1

Views

Author

Clark Kimberling, Apr 26 2019

Keywords

Comments

These are the numbers 2x + 1 and 3x + 1 as x ranges through the numbers in A077477.

Crossrefs

Programs

  • Mathematica
    a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1, Apply[Or,
    Map[MemberQ[a, #] &, Select[Flatten[{(# - 1)/3, (# - 1)/2}],
    IntegerQ]]] &]], {150}]; a;     (* A077477 *)
    Complement[Range[Last[a]], a];  (* A325422 *)
    (* Peter J. C. Moses, Apr 23 2019 *)

A325440 a(n) is the least number not 2*a(m)-1 or 3*a(m)-1 for any m < n.

Original entry on oeis.org

1, 3, 4, 6, 9, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 24, 28, 30, 32, 33, 34, 36, 37, 40, 42, 45, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 60, 61, 64, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 100, 102, 104
Offset: 1

Views

Author

Clark Kimberling, May 02 2019

Keywords

Examples

			The sequence necessarily starts with 1.  The next 2 terms are determined as follows:  because a(1) = 1, the number 2 is disallowed, so that a(2) = 3, whence the numbers 5 and 8 are disallowed, and a(3) = 4.  See A325417 for a guide to related sequences.
		

Crossrefs

Programs

  • Mathematica
    a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1, Apply[Or,
    Map[MemberQ[a, #] &, Select[Flatten[{(#+1)/2, (#+1)/3}],
    IntegerQ]]] &]], {150}]; a          (* A325440 *)
    Complement[Range[Last[a]], a]       (* A325441 *)
    (* Peter J. C. Moses, Apr 25 2019 *)

A325442 a(n) is the least number not 2*a(m)-1 or 3*a(m) for any m < n.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 11, 13, 14, 16, 17, 18, 20, 22, 23, 26, 28, 29, 32, 34, 36, 37, 38, 40, 41, 44, 46, 47, 49, 50, 52, 53, 56, 58, 59, 61, 62, 64, 65, 68, 70, 72, 74, 76, 77, 80, 82, 83, 85, 86, 88, 89, 90, 92, 94, 95, 98, 100, 101, 104, 106, 107, 109, 110
Offset: 1

Views

Author

Clark Kimberling, May 02 2019

Keywords

Examples

			The sequence necessarily starts with 1.  The next 2 terms are determined as follows:  because a(1) = 1, the number 3 is disallowed, so that a(2) = 2, whence the numbers 3 and 6 are disallowed, and a(3) = 4.  See A325417 for a guide to related sequences.
		

Crossrefs

Programs

  • Mathematica
    a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1, Apply[Or,
    Map[MemberQ[a, #] &, Select[Flatten[{(#+1)/2, #/3}],
    IntegerQ]]] &]], {150}]; a          (* A325442 *)
    Complement[Range[Last[a]], a]       (* A325443 *)
    (* Peter J. C. Moses, Apr 25 2019 *)

A325462 a(n) is the least number not 2*a(m) or 3*a(m)-1 for any m < n.

Original entry on oeis.org

1, 3, 4, 5, 7, 9, 12, 13, 15, 16, 17, 19, 21, 22, 23, 25, 27, 28, 29, 31, 33, 36, 37, 39, 40, 41, 43, 45, 48, 49, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 67, 69, 70, 71, 73, 75, 76, 77, 79, 81, 84, 85, 87, 88, 89, 91, 93, 94, 95, 97, 99, 100, 101, 103, 105
Offset: 1

Views

Author

Clark Kimberling, May 01 2019

Keywords

Examples

			The sequence necessarily starts with 1.  The next 2 terms are determined as follows:  because a(1) = 1, the number 2 is disallowed, so that a(2) = 3, whence the numbers 6 and 8 are disallowed, and a(3) = 4.  See A325417 for a guide to related sequences.
		

Crossrefs

Programs

  • Mathematica
    a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1, Apply[Or,
    Map[MemberQ[a, #] &, Select[Flatten[{#/2, (#+1)/3}],
    IntegerQ]]] &]], {150}]; a          (* A325462 *)
    Complement[Range[Last[a]], a]       (* A325463 *)
    (* Peter J. C. Moses, Apr 25 2019 *)

A325464 a(n) is the least number not 2*a(m) or 3*a(m)-2 for any m < n.

Original entry on oeis.org

1, 3, 4, 5, 9, 11, 12, 14, 15, 16, 17, 19, 20, 21, 23, 26, 27, 29, 33, 35, 36, 37, 39, 41, 44, 45, 47, 48, 50, 51, 53, 56, 57, 59, 60, 62, 63, 64, 65, 68, 69, 71, 73, 75, 77, 80, 81, 83, 84, 86, 87, 89, 91, 92, 93, 95, 98, 99, 101, 104, 105, 107, 108, 110
Offset: 1

Views

Author

Clark Kimberling, May 01 2019

Keywords

Examples

			The sequence necessarily starts with 1.  The next 2 terms are determined as follows:  because a(1) = 1, the number 2 is disallowed, so that a(2) = 3, whence the numbers 6 and 7 are disallowed, and a(3) = 4.  See A325417 for a guide to related sequences.
		

Crossrefs

Programs

  • Mathematica
    a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1, Apply[Or,
    Map[MemberQ[a, #] &, Select[Flatten[{#/2, (#+2)/3}],
    IntegerQ]]] &]], {150}]; a          (* A325464 *)
    Complement[Range[Last[a]], a]       (* A325465 *)
    (* Peter J. C. Moses, Apr 25 2019 *)

A325498 Difference sequence of A036668.

Original entry on oeis.org

3, 1, 1, 1, 2, 2, 2, 3, 1, 2, 1, 3, 1, 1, 3, 1, 1, 1, 4, 1, 1, 4, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 4, 2, 2, 1, 1, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 1, 2, 2, 4, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 4, 2, 3, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 4, 2, 4, 1, 1, 1, 3, 1, 1, 3, 1
Offset: 1

Views

Author

Clark Kimberling, May 05 2019

Keywords

Comments

See A325417 for a guide to related sequences.
Conjecture: every term is in {1,2,3,4}.

Examples

			A036668 is given by A(n) = least number not 2*A(m) or 3*A(m) for any m < n, so that A = (1,4,5,6,7,9,11,...), with differences (3,1,1,1,2,2,...).
		

Crossrefs

Programs

  • Mathematica
    a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1,
    Apply[Or, Map[MemberQ[a, #] &, Select[Flatten[{#/3, #/2}],
    IntegerQ]]] &]], {2000}]; a ;       (* A036668 *)
    c = Complement[Range[Last[a]], a] ; (* A325424 *)
    Differences[a]  (* A325498 *)
    Differences[c]  (* A325499 *)
    (* Peter J. C. Moses, Apr 23 2019 *)

Formula

Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = 12/7. - Amiram Eldar, Nov 26 2020

A325445 Difference sequence of A325418.

Original entry on oeis.org

2, 2, 4, 4, 2, 2, 4, 2, 1, 1, 2, 2, 4, 3, 1, 2, 2, 4, 6, 2, 4, 3, 1, 2, 2, 4, 2, 6, 4, 4, 2, 2, 4, 2, 1, 1, 2, 2, 4, 3, 1, 2, 2, 4, 2, 4, 2, 4, 3, 1, 2, 2, 4, 3, 1, 2, 2, 1, 1, 2, 4, 2, 2, 4, 2, 1, 1, 2, 2, 4, 3, 1, 2, 2, 4, 6, 2, 4, 3, 1, 2, 2, 4, 2, 4, 2
Offset: 1

Views

Author

Clark Kimberling, May 03 2019

Keywords

Comments

See A325417 for a guide to related sequences. Conjecture: all the differences are in {1,2,3,4,6}; 5 does not occur; a count of differences d(n) = a(n)-a(n-1) for n=2..10000 follows: 1082 occurrences of d(n) = 1; 2693 of 2; 744 of 3; 1609 of 4, 0 of 5, and 198 of 6.

Crossrefs

Programs

  • Mathematica
    a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1,
    Apply[Or, Map[MemberQ[a, #] &, Select[Flatten[{#/2, (# - 1)/3}],
    IntegerQ]]] &]], {2000}]; a ;       (* A325417 *)
    c = Complement[Range[Last[a]], a] ; (* A325418 *)
    Differences[a]  (* A325444 *)
    Differences[c]  (* A325445 *)
    (* Peter J. C. Moses, Apr 23 2019 *)

A325494 Difference sequence of A325419.

Original entry on oeis.org

1, 2, 3, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 3, 1, 2, 3, 1, 2, 1, 1, 2, 2, 3, 1, 2, 1, 2, 1, 2, 3, 1, 2, 1, 2, 1, 2, 3, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 2, 3
Offset: 1

Views

Author

Clark Kimberling, May 05 2019

Keywords

Comments

See A325417 for a guide to related sequences. Conjecture: every term is in {1,2,3}.

Examples

			A325419 is given by A(n) = least number not 3*A(m) or 2*A(m)+1 for any m < n, so that A = (1,2,4,7,8,10,11,...), with differences (1,2,3,1,2,1,...).
		

Crossrefs

Programs

  • Mathematica
    a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1,
    Apply[Or, Map[MemberQ[a, #] &, Select[Flatten[{#/3, (# - 1)/2}],
    IntegerQ]]] &]], {2000}]; a ;       (* A325419 *)
    c = Complement[Range[Last[a]], a] ; (* A325420 *)
    Differences[a]  (* A325494 *)
    Differences[c]  (* A325495 *)
    (* Peter J. C. Moses, Apr 23 2019 *)

A325495 Difference sequence of A325420.

Original entry on oeis.org

2, 1, 3, 3, 3, 2, 4, 2, 1, 3, 2, 1, 3, 4, 2, 2, 1, 3, 3, 3, 2, 1, 3, 3, 3, 2, 1, 3, 2, 2, 2, 2, 1, 3, 3, 3, 2, 4, 2, 1, 3, 2, 1, 3, 3, 3, 2, 1, 3, 2, 1, 3, 2, 4, 3, 3, 2, 1, 3, 4, 2, 2, 1, 3, 3, 3, 2, 4, 2, 1, 3, 2, 1, 3, 4, 2, 2, 1, 3, 3, 3, 2, 4, 3, 3, 2
Offset: 1

Views

Author

Clark Kimberling, May 05 2019

Keywords

Comments

See A325417 for a guide to related sequences. Conjecture: every term is in {1,2,3,4}.

Crossrefs

Programs

  • Mathematica
    a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1,
    Apply[Or, Map[MemberQ[a, #] &, Select[Flatten[{#/3, (# - 1)/2}],
    IntegerQ]]] &]], {2000}]; a ;       (* A325419 *)
    c = Complement[Range[Last[a]], a] ; (* A325420 *)
    Differences[a]  (* A325494 *)
    Differences[c]  (* A325495 *)
    (* Peter J. C. Moses, Apr 23 2019 *)

A325496 Difference sequence of A077477.

Original entry on oeis.org

1, 4, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 3, 2, 3, 1, 2, 1, 1, 2, 2, 3, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 3, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 3, 1, 2, 1, 1, 2, 2, 4, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 3
Offset: 1

Views

Author

Clark Kimberling, May 05 2019

Keywords

Comments

See A325417 for a guide to related sequences. Conjecture: every term is in {1,2,3,4}.

Examples

			A077477 is given by A(n) = least number not 2*A(m)+1 or 3*A(m)+1 for any m < n, so that A = (1,2,6,8,9,10,11,12,14,...), with differences (1,4,2,1,1,1,1,2,...).
		

Crossrefs

Programs

  • Mathematica
    a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1,
    Apply[Or, Map[MemberQ[a, #] &, Select[Flatten[{(#-1)/3, (# - 1)/2}],
    IntegerQ]]] &]], {2000}]; a ;       (* A077477 *)
    c = Complement[Range[Last[a]], a] ; (* A325422 *)
    Differences[a]  (* A325496 *)
    Differences[c]  (* A325497 *)
    (* Peter J. C. Moses, Apr 23 2019 *)
Previous Showing 21-30 of 50 results. Next