cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A328680 The number of iterations before a repeated value appears when starting from n and performing the iterative cycle as described in the comments, which involves setting the next iterative number to either A053392 or A040115 depending on the current numbers' size relative to n.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5
Offset: 1

Views

Author

Scott R. Shannon, Dec 03 2019

Keywords

Comments

This sequence is based on the following iterative cycle. Start with n, set m = A040115(n), the concatenation of the absolute values of differences between adjacent digits, and then repeat the following until the number m has been previously seen: if m is greater than n, let m = A040115(m), otherwise let m = A053392(m), the concatenation of the sums of pairs of adjacent digits.
For all starting values n the iteration eventually converges to 0 or else goes into a cycle of finite length. When the number m gets larger than the iteration's starting value n it will always have its magnitude decreased by the operation m = A040115(m), while m = A053392(m) can either increase or decrease its magnitude, depending on the digit values of m. This has the overall effect of never allowing the iterative values to increase without limit as is seen in the similar iterations A328975 and A329624.
All the values of A053393 are seen as repeating values in this sequence, although this sequence has significantly more; probably an infinite number, although this is unknown. The first nonzero repeating value is not seen until a(9090), which forms the two-member loop of 999 -> 1818 -> 999. The first starting value that leads to an m value greater than the initial starting value is a(10090), see examples below. A330159 lists the starting values which are also the first repeating value.
For the first 20 million terms the longest iterative sequence is seen for a(18505180) which takes 457 steps before reaching 0. See attached link. The longest found looping sequence is for a(14106482) which reaches 1040103 after 5 steps and then again after 116 steps, forming a loop of length 111. The largest number found which starts the repeating loop is for a(9265011) which reaches 1411131715 after 9 iterations and then again after 41 iterations.
From a(12) to a(99) the sequence repeats a pattern of ten 3's followed by a 2. After that, a(100) = 4 and the terms begin to show a slow average increase in value.

Examples

			a(10) = 3 as A040115(10) = 1, A053392(1) = 0, and A053392(0) = 0, taking three steps to repeat from 10.
a(1060) = 7 as A040115(1060) = 166, A053392(166) = 712, A053392(712) = 83, A053392(83) = 11, A053392(11) = 2, A053392(2) = 0, A053392(0) = 0, taking seven steps to repeat from 1060.
a(10090) = 11 as A040115(10090) = 1099, A053392(1099) = 1918, A053392(1918) = 10109, A040115(10109) = 1119, A053392(1119) = 2210, A053392(2210) = 431, A053392(431) = 74, A053392(74) = 11, A053392(11) = 2, A053392(2) = 0, A053392(0) = 0, taking eleven steps to repeat from 11090.
		

Crossrefs

A329340 Size of the orbit of n under "ghost iterations" A329201 (rule B).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 3, 2, 3, 2, 4, 2, 5, 2, 1, 3, 2, 3, 2, 3, 2, 4, 2, 5, 2, 1, 3, 2, 3, 2, 3, 2, 4, 2, 5, 2, 1, 3, 2, 3, 2, 3, 2, 4, 2, 5, 2, 1, 3, 2, 3, 2, 3, 2, 4, 2, 5, 2, 1, 3, 2, 3, 2, 3, 2, 4, 2, 5, 2, 1, 3, 2, 3, 2, 3, 2, 4, 2, 5, 2, 1, 3, 2, 3, 2, 3, 2, 4, 2, 5, 2, 1, 3, 4, 3, 6, 3, 5, 3, 5, 3, 5, 2, 1, 3, 2, 3, 2, 5, 2, 9, 2, 4
Offset: 0

Views

Author

M. F. Hasler, Nov 11 2019

Keywords

Comments

Or: Number of iterations of A329201 until a number is seen for the second time in the trajectory of n.
A329201 consists of subtracting from or adding to n, depending on whether it is even or odd, the number A040115(n) whose digits are the differences of adjacent digits of n.
The trajectory of all numbers < 8000 ends in a repdigit (A010785), which are fixed points of this map. Some larger numbers enter nontrivial cycles, cf. A329342. In both cases, some number(s) will appear infinitely often in the trajectory. This sequence gives the number of iterations until a value is repeated for the first time in the trajectory of n. This is also the size of n's orbit, i.e. the total number of distinct values that will occur.
If n is part of a cycle (n in A329342), a(n) gives the length of the cycle; in particular a(n) = 1 for fixed points.
For 11 <= n <= 99 the pattern ( 1, 3, 2, 3, 2, 3, 2, 4, 2, 5, 2) of length 11 repeats. But the trajectory of those n with same a(n) does not always end in the corresponding repdigit.

Examples

			For repdigits A010785 and in particular single-digit numbers, {0, 1, ..., 9, 11, 22, ...}, A329201(n) = n, so O(n) = {n} and a(n) = 1.
For others we have:
10 -> 11, so a(10) = #{10, 11} = 2.
12 -> 13 -> 11, so a(10) = #{12, 13, 11} = 2. Also 23 -> 24 -> 22, so a(23) = 3, and similarly for 34, 45, 56, 67 and 78. But 89 -> 90 -> 99, the next *larger* repdigit!
20 -> 18 -> 25 -> 28 -> 22, whence a(20) = 5. Similarly, 31 -> 29 -> 36 -> 39 -> 33, a(31) = 5, too. But 42 -> 40 -> 36 -> 39 -> 33 goes to the next *lower* repdigit, yet still has a(42) = 5.
		

Crossrefs

Cf. A329201, A329197 (analog for A329200), A329342 (list of cycles), A329341 (length of cycles), A329196, A329197 (cycles for A329200).

Programs

  • PARI
    apply( A329340(n,M=oo,U=[n])={for(k=1,M,setsearch(U,n=A329201(n))&&return(k); U=setunion(U,[n]))}, [0..122])

Formula

a(n) = 1 <=> n is a fixed point of A329201 <=> n is a repdigit number (A010785).
a(n) = a(n') if 11 <= n, n' <= 99 and n == n' (mod 11).
a(n) = # orbit(n) where orbit(n) = { (A329201^k)(n); k >= 0 }.

A329341 Length of nontrivial cycles under the ghost iteration A329201, as listed in the table A329342.

Original entry on oeis.org

3, 7, 3, 6, 5, 3, 3, 6, 9, 12, 5, 3, 3, 3, 3, 6, 3, 5, 4, 3, 3, 3, 3, 3, 6, 3, 5, 4, 11, 3, 3, 3, 3, 17, 3, 3, 6, 3, 3, 5, 11
Offset: 1

Views

Author

M. F. Hasler, Nov 10 2019

Keywords

Comments

A329201 consists of adding or subtracting the number A040115(n) whose digits are the difference between adjacent digits of n, depending on its parity. Repdigits A010785 are fixed points of this map, but some numbers enter nontrivial cycles. Sequence A329342 lists these cycles, ordered by their smallest member which is always listed first. This sequence gives the row lengths.

Examples

			a(1) = 3 is the length of the first cycle, (8290, 8969, 9102).
a(2) = 7 is the length of the next cycle, (17998,  24199,  21819,  20041,  22084,  21800, 20020).
a(3) = 3 = a(7) is the length of all members of the family starting with (21901, 23792, 25219) and continued by duplicating the initial digit of each term.
a(4) = 6 = a(8) is the length of all members of the family starting with (54503,  55656,  55767,  55978,  56399,  55039), extended as above.
a(5) = 5 = a(11) is the length of all members of the family starting with (87290,  88869,  88892,  88909,  89108), extended as above.
		

Crossrefs

Cf. A329342 (table of cycles), A329201, A329197 (analog for A329200), A329198.

Extensions

a(12) - a(41) from Scott R. Shannon, Nov 12 2019

A330159 The self-repeating start values of the iterative sequence A328680.

Original entry on oeis.org

91711, 91712, 141691, 151481, 161271, 271161, 1310812, 5020232, 10117443, 11552816, 14118522, 14149412, 14821815, 31410828, 35523710, 41113743, 46211402, 84404483, 91186117
Offset: 1

Views

Author

Scott R. Shannon, Dec 03 2019

Keywords

Comments

This sequences lists the self-repeating starting values n for the iterative sequence defined in A328680 up to starting values of n = 10^8. Each number in this sequence, when acting as the starting value for the A328680 iteration, will be the first number repeated in the iteration. Note that the other numbers appearing in the iterative sequence for a given start value n will in general NOT be other entries of this sequence as the iteration depends critically on the start value of n itself. As can be seen these numbers are quite rare, there being only 19 entries for n up to 100 million. It is unknown if this is a finite or infinite sequence.

Examples

			91711 is in the sequence as A040115(91711) = 8660, A053392(8660) = 14126, A053392(14126) = 5538, A053392(5538) = 10811, A053392(10811) = 1892, A053392(1892) = 91711, repeating the starting value 91711.
		

Crossrefs

Previous Showing 11-14 of 14 results.