A329961 Beatty sequence for 2 + sin x, where x = least positive solution of 1/(2 + sin x) + 1/(2 + cos x) = 1.
2, 5, 8, 11, 14, 17, 20, 23, 25, 28, 31, 34, 37, 40, 43, 46, 49, 51, 54, 57, 60, 63, 66, 69, 72, 74, 77, 80, 83, 86, 89, 92, 95, 98, 100, 103, 106, 109, 112, 115, 118, 121, 123, 126, 129, 132, 135, 138, 141, 144
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Beatty Sequence.
- Index entries for sequences related to Beatty sequences
Programs
-
Mathematica
Solve[1/(2 + Sin[x]) + 1/(2 + Cos[x]) == 1, x] u = ArcCos[-(1/2) + 1/Sqrt[2] - 1/2 Sqrt[-1 + 2 Sqrt[2]]] u1 = N[u, 150] RealDigits[u1, 10][[1]] (* A329960 *) Table[Floor[n*(2 + Sin[u])], {n, 1, 50}] (* A329961 *) Table[Floor[n*(2 + Cos[u])], {n, 1, 50}] (* A329962 *) Plot[1/(2 + Sin[x]) + 1/(2 + Cos[x]) - 1, {x, -1, 3}]
Formula
a(n) = floor(n*(2 + sin x)), where x = 2.058943... is the constant in A329960.
Comments