cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A330571 Square of number of unordered factorizations of n as n = i*j.

Original entry on oeis.org

1, 1, 1, 4, 1, 4, 1, 4, 4, 4, 1, 9, 1, 4, 4, 9, 1, 9, 1, 9, 4, 4, 1, 16, 4, 4, 4, 9, 1, 16, 1, 9, 4, 4, 4, 25, 1, 4, 4, 16, 1, 16, 1, 9, 9, 4, 1, 25, 4, 9, 4, 9, 1, 16, 4, 16, 4, 4, 1, 36, 1, 4, 9, 16, 4, 16, 1, 9, 4, 16, 1, 36, 1, 4, 9, 9, 4, 16, 1, 25, 9, 4, 1, 36, 4, 4, 4, 16, 1, 36, 4, 9, 4, 4, 4, 36
Offset: 1

Views

Author

N. J. A. Sloane, Jan 08 2020

Keywords

Comments

Unordered analog of A035116.
For background references see A330570.

Crossrefs

Equals A038548(n)^2.
Cf. A035116.

Programs

  • Mathematica
    a[n_] := Ceiling[DivisorSigma[0, n] / 2]^2; Array[a, 100] (* Amiram Eldar, Apr 19 2024 *)
  • PARI
    a(n) = (numdiv(n) \/ 2)^2; \\ Amiram Eldar, Apr 19 2024

A331072 a(n) = Sum_{k = 1..n} u_3(k), where u_3 = A034836.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 12, 14, 16, 17, 21, 22, 24, 26, 30, 31, 35, 36, 40, 42, 44, 45, 51, 53, 55, 58, 62, 63, 68, 69, 74, 76, 78, 80, 88, 89, 91, 93, 99, 100, 105, 106, 110, 114, 116, 117, 126, 128, 132, 134, 138, 139, 145, 147, 153, 155, 157, 158, 168, 169, 171, 175, 182, 184, 189, 190, 194, 196, 201, 202, 214, 215, 217
Offset: 1

Views

Author

N. J. A. Sloane, Jan 10 2020

Keywords

Comments

For background references see A330570.

Crossrefs

Cf. A034836.
A096276 has the same initial terms, but is a different sequence.

Programs

  • Mathematica
    s[1] = 1; s[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[IntegerQ[Surd[n, 3]], 1/3, 0] + (Times @@ ((e + 1)*(e + 2)/2))/6 + (Times @@ (Floor[e/2] + 1))/2]; Accumulate[Array[s, 100]] (* Amiram Eldar, Apr 19 2024 *)

A331077 a(n) = Sum_{k = 1..n} [d(k)*d_3(k)], where d = A000005, d_3 = A007425.

Original entry on oeis.org

1, 7, 13, 31, 37, 73, 79, 119, 137, 173, 179, 287, 293, 329, 365, 440, 446, 554, 560, 668, 704, 740, 746, 986, 1004, 1040, 1080, 1188, 1194, 1410, 1416, 1542, 1578, 1614, 1650, 1974, 1980, 2016, 2052, 2292, 2298, 2514, 2520, 2628, 2736, 2772, 2778, 3228, 3246, 3354, 3390, 3498, 3504, 3744, 3780, 4020, 4056
Offset: 1

Views

Author

N. J. A. Sloane, Jan 10 2020

Keywords

Comments

For background references see A330570.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (e+1)^2*(e+2)/2; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Array[s, 100]] (* Amiram Eldar, Apr 19 2024 *)
  • PARI
    lista(nmax) = {my(s = 0); for(n = 1, nmax, s += vecprod(apply(e -> (e+1)^2*(e+2)/2, factor(n)[,2])); print1(s, ", "));} \\ Amiram Eldar, Apr 19 2024

Formula

a(n) ~ c * n * log(n)^5 /5!, where c = Product_{p prime} ((1-1/p)^2*(1+2/p)) = 0.286747428434478734107... (Titchmarsh, 1942). - Amiram Eldar, Apr 19 2024

A331078 a(n) = Sum_{k = 1..n} [u_2(k)*u_3(k)], where u_2 = A038548, u_3 = A034836.

Original entry on oeis.org

1, 2, 3, 7, 8, 12, 13, 19, 23, 27, 28, 40, 41, 45, 49, 61, 62, 74, 75, 87, 91, 95, 96, 120, 124, 128, 134, 146, 147, 167, 168, 183, 187, 191, 195, 235, 236, 240, 244, 268, 269, 289, 290, 302, 314, 318, 319, 364, 368, 380, 384, 396, 397, 421, 425, 449, 453, 457, 458, 518, 519, 523, 535, 563, 567, 587, 588, 600, 604, 624
Offset: 1

Views

Author

N. J. A. Sloane, Jan 10 2020

Keywords

Comments

For background references see A330570.

Crossrefs

Programs

  • Mathematica
    s[1] = 1; s[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Ceiling[(Times @@ (e + 1)) / 2]*(If[IntegerQ[Surd[n, 3]], 1/3, 0] + (Times @@ ((e + 1)*(e + 2)/2))/6 + (Times @@ (Floor[e/2] + 1))/2)]; Accumulate[Array[s, 100]] (* Amiram Eldar, Apr 19 2024 *)

A331079 a(n) = Sum_{i=1..n} u_2(i)*u_2(i+1), where u_2(n) = A038548(n).

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 16, 20, 22, 25, 28, 30, 34, 40, 43, 46, 49, 52, 58, 62, 64, 68, 76, 80, 84, 90, 93, 97, 101, 104, 110, 114, 118, 128, 133, 135, 139, 147, 151, 155, 159, 162, 171, 177, 179, 184, 194, 200, 206, 212, 215, 219, 227, 235, 243, 247, 249, 255, 261
Offset: 1

Views

Author

N. J. A. Sloane, Jan 10 2020

Keywords

Comments

For background references see A330570.

Crossrefs

Programs

  • Mathematica
    With[{s = Table[Ceiling[DivisorSigma[0, n] / 2], {n, 1, 100}]}, Accumulate[Most[s] * Rest[s]]] (* Amiram Eldar, Apr 19 2024 *)
Previous Showing 11-15 of 15 results.