cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A330726 Number of balanced reduced multisystems of maximum depth whose atoms are positive integers summing to n.

Original entry on oeis.org

1, 1, 2, 3, 7, 17, 54, 199, 869, 4341, 24514, 154187
Offset: 0

Views

Author

Gus Wiseman, Jan 03 2020

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.

Examples

			The a(1) = 1 through a(5) = 17 multisystems (commas elided):
  {1}  {2}   {3}        {4}               {5}
       {11}  {12}       {22}              {23}
             {{1}{11}}  {13}              {14}
                        {{1}{12}}         {{1}{13}}
                        {{2}{11}}         {{1}{22}}
                        {{{1}}{{1}{11}}}  {{2}{12}}
                        {{{11}}{{1}{1}}}  {{3}{11}}
                                          {{{1}}{{1}{12}}}
                                          {{{11}}{{1}{2}}}
                                          {{{1}}{{2}{11}}}
                                          {{{12}}{{1}{1}}}
                                          {{{2}}{{1}{11}}}
                                          {{{{1}}}{{{1}}{{1}{11}}}}
                                          {{{{1}}}{{{11}}{{1}{1}}}}
                                          {{{{1}{1}}}{{{1}}{{11}}}}
                                          {{{{1}{11}}}{{{1}}{{1}}}}
                                          {{{{11}}}{{{1}}{{1}{1}}}}
		

Crossrefs

The case with all atoms equal to 1 is A000111.
The non-maximal version is A330679.
A tree version is A320160.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
    				

A330785 Triangle read by rows where T(n,k) is the number of chains of length k from minimum to maximum in the poset of integer partitions of n ordered by refinement.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 5, 8, 4, 0, 1, 9, 25, 28, 11, 0, 1, 13, 57, 111, 99, 33, 0, 1, 20, 129, 379, 561, 408, 116, 0, 1, 28, 253, 1057, 2332, 2805, 1739, 435, 0, 1, 40, 496, 2833, 8695, 15271, 15373, 8253, 1832, 0, 1, 54, 898, 6824, 28071, 67790, 98946, 85870, 40789, 8167
Offset: 1

Views

Author

Gus Wiseman, Jan 03 2020

Keywords

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   1   3   2
   0   1   5   8   4
   0   1   9  25  28  11
   0   1  13  57 111  99  33
   0   1  20 129 379 561 408 116
Row n = 5 counts the following chains (minimum and maximum not shown):
  ()  (14)    (113)->(14)    (1112)->(113)->(14)
      (23)    (113)->(23)    (1112)->(113)->(23)
      (113)   (122)->(14)    (1112)->(122)->(14)
      (122)   (122)->(23)    (1112)->(122)->(23)
      (1112)  (1112)->(14)
              (1112)->(23)
              (1112)->(113)
              (1112)->(122)
		

Crossrefs

Row sums are A213427.
Main diagonal is A002846.
Column k=3 is A007042.
Dominated by A330784.
The version for set partitions is A008826.
The version for factorizations is A330935.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    upr[q_]:=Union[Sort/@Apply[Plus,mps[q],{2}]];
    paths[eds_,start_,end_]:=If[start==end,Prepend[#,{}],#]&[Join@@Table[Prepend[#,e]&/@paths[eds,Last[e],end],{e,Select[eds,First[#]==start&]}]];
    Table[Length[Select[paths[Join@@Table[{y,#}&/@DeleteCases[upr[y],y],{y,Sort/@IntegerPartitions[n]}],ConstantArray[1,n],{n}],Length[#]==k-1&]],{n,8},{k,n}]

Formula

T(n,k) = A330935(2^n,k).
Previous Showing 11-12 of 12 results.