cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A331230 Numbers k such that the number of factorizations of k into distinct factors > 1 is odd.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 17, 18, 19, 20, 23, 24, 25, 28, 29, 30, 31, 32, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 83, 84, 88, 89, 90, 92, 97, 98, 99, 100, 101, 102
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Comments

First differs from A319237 in lacking 300.

Crossrefs

The version for strict integer partitions is A001318.
The version for integer partitions is A052002.
The version for set partitions appears to be A032766.
The non-strict version is A331050.
The version for primes (instead of odds) is A331201.
The even version is A331231.
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with n strict factorizations is A330974(n).

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],OddQ[Length[strfacs[#]]]&]

A331231 Numbers k such that the number of factorizations of k into distinct factors > 1 is even.

Original entry on oeis.org

6, 8, 10, 14, 15, 16, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 64, 65, 69, 74, 77, 81, 82, 85, 86, 87, 91, 93, 94, 95, 96, 106, 111, 115, 118, 119, 120, 122, 123, 125, 129, 133, 134, 141, 142, 143, 144, 145, 146, 155, 158, 159, 160, 161, 166
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Comments

First differs from A319238 in having 300.

Crossrefs

The version for integer partitions is A001560.
The version for strict integer partitions is A090864.
The version for set partitions appears to be A016789.
The non-strict version is A331051.
The version for primes (instead of evens) is A331201.
The odd version is A331230.
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
The least number with n strict factorizations is A330974(n).

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],EvenQ[Length[strfacs[#]]]&]

A331049 Number of factorizations of A055932(n), the least representative of the n'th distinct unsorted prime signature, into factors > 1.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 4, 7, 5, 7, 9, 12, 7, 11, 11, 16, 11, 19, 16, 21, 15, 29, 11, 12, 26, 30, 15, 31, 38, 22, 21, 47, 26, 29, 52, 45, 36, 57, 26, 64, 19, 30, 52, 77, 52, 36, 57, 98, 21, 67, 38, 74, 97, 66, 105, 47, 42, 36, 109, 118, 98, 92, 109, 52, 171, 30
Offset: 1

Views

Author

Gus Wiseman, Jan 10 2020

Keywords

Comments

A factorization of n is a finite, nondecreasing sequence of positive integers > 1 with product n. Factorizations are counted by A001055.
The unsorted prime signature of A055932(n) is given by row n of A124829.

Examples

			The a(1) = 1 through a(11) = 7 factorizations:
  {}  2  4    6    8      12     16       18     24       30     32
         2*2  2*3  2*4    2*6    2*8      2*9    3*8      5*6    4*8
                   2*2*2  3*4    4*4      3*6    4*6      2*15   2*16
                          2*2*3  2*2*4    2*3*3  2*12     3*10   2*2*8
                                 2*2*2*2         2*2*6    2*3*5  2*4*4
                                                 2*3*4           2*2*2*4
                                                 2*2*2*3         2*2*2*2*2
		

Crossrefs

The sorted-signature version is A050322.
This sequence has range A045782.
Factorizations are A001055.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Length@*facs/@First/@GatherBy[Range[1500],If[#==1,{},Last/@FactorInteger[#]]&]

Formula

a(n) = A001055(A055932(n)).
Previous Showing 21-23 of 23 results.