cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-65 of 65 results.

A335522 Numbers k such that the k-th composition in standard order (A066099) avoids the pattern (1,1,2).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Crossrefs

Patterns avoiding this pattern are counted by A001710 (by length).
Permutations of prime indices avoiding this pattern are counted by A335449.
These compositions are counted by A335471 (by sum).
The complement A335476 is the matching version.
The (2,1,1)-avoiding version is A335523.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],!MatchQ[stc[#],{_,x_,_,x_,_,y_,_}/;x
    				

A335523 Numbers k such that the k-th composition in standard order (A066099) avoids the pattern (2,1,1).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 76, 80, 81, 82, 84, 85, 86, 88, 90
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Crossrefs

Patterns avoiding this pattern are counted by A001710 (by length).
Permutations of prime indices avoiding this pattern are counted by A335449.
These compositions are counted by A335471 (by sum).
The complement A335478 is the matching version.
The (1,1,2)-avoiding version is A335522.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],!MatchQ[stc[#],{_,x_,_,y_,_,y_,_}/;x>y]&]

A350250 Numbers k such that the k-th composition in standard order is a non-alternating permutation of an initial interval of positive integers.

Original entry on oeis.org

37, 52, 549, 550, 556, 564, 581, 600, 616, 649, 657, 712, 786, 802, 836, 840, 16933, 16934, 16937, 16940, 16946, 16948, 16965, 16977, 16984, 16994, 17000, 17033, 17041, 17092, 17096, 17170, 17186, 17220, 17224, 17445, 17446, 17452, 17460, 17541, 17569, 17584
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2022

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and corresponding permutations begin:
     37: (3,2,1)
     52: (1,2,3)
    549: (4,3,2,1)
    550: (4,3,1,2)
    556: (4,2,1,3)
    564: (4,1,2,3)
    581: (3,4,2,1)
    600: (3,2,1,4)
    616: (3,1,2,4)
    649: (2,4,3,1)
    657: (2,3,4,1)
    712: (2,1,3,4)
    786: (1,4,3,2)
    802: (1,3,4,2)
    836: (1,2,4,3)
    840: (1,2,3,4)
  16933: (5,4,3,2,1)
		

Crossrefs

This is the non-alternating case of A333218.
This is the restriction of A345168 to permutations, complement A345167.
These partitions are counted by A348615, complement A001250.
A003242 counts anti-run compositions, patterns A005649.
A025047 counts alternating compositions, directed A025048/A025049.
A345192 counts non-alternating compositions.
A345194 counts alternating patterns, complement A350252.
Statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of maximal anti-runs is A333381.
- Number of distinct parts is A334028.
Classes of standard compositions:
- Weakly decreasing compositions (partitions) are A114994, strict A333256.
- Weakly increasing compositions (multisets) are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Anti-run compositions are A333489, complement A348612.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    wigQ[y_]:=Or[Length[y]==0, Length[Split[y]]==Length[y] &&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Select[Range[0,1000],(Sort[stc[#]]==Range[Length[stc[#]]]&&!wigQ[stc[#]])&]

A375408 Numbers k such that the k-th composition in standard order is not weakly increasing or weakly decreasing.

Original entry on oeis.org

13, 22, 25, 27, 29, 38, 41, 44, 45, 46, 49, 50, 51, 53, 54, 55, 57, 59, 61, 70, 76, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 92, 93, 94, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 110, 111, 113, 114, 115, 117, 118, 119, 121, 123, 125, 134, 140, 141, 142
Offset: 1

Views

Author

Gus Wiseman, Sep 18 2024

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and corresponding compositions begin:
  13: (1,2,1)
  22: (2,1,2)
  25: (1,3,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  38: (3,1,2)
  41: (2,3,1)
  44: (2,1,3)
  45: (2,1,2,1)
  46: (2,1,1,2)
  49: (1,4,1)
  50: (1,3,2)
  51: (1,3,1,1)
  53: (1,2,2,1)
  54: (1,2,1,2)
  55: (1,2,1,1,1)
  57: (1,1,3,1)
  59: (1,1,2,1,1)
		

Crossrefs

The version for run-lengths of compositions is A332833.
Compositions of this type are counted by A332834, complement maybe A329398.
A001523 counts unimodal compositions, ranks too dense.
A011782 counts compositions.
A114994 ranks weakly decreasing compositions, complement A335485.
A115981 counts non-unimodal compositions, ranked by A335373.
A225620 ranks weakly increasing compositions, complement A335486.
A238130, A238279, A333755 count compositions by number of runs.
A332835 counts compositions with weakly incr. or weakly decr. run-lengths.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of strict compositions are A233564.
- Ranks of constant compositions are A272919.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!LessEqual@@stc[#]&&!GreaterEqual@@stc[#]&]

Formula

Intersection of A335485 and A335486.

A349152 Standard composition numbers of compositions into divisors. Numbers k such that all parts of the k-th composition in standard order are divisors of the sum of parts.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 8, 10, 11, 13, 14, 15, 16, 31, 32, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 127, 128, 136, 138, 139, 141, 142, 143, 162, 163, 168, 170, 171, 173, 174, 175, 177, 181, 182, 183, 184
Offset: 1

Views

Author

Gus Wiseman, Nov 15 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and corresponding compositions begin:
      0: ()              36: (3,3)           54: (1,2,1,2)
      1: (1)             37: (3,2,1)         55: (1,2,1,1,1)
      2: (2)             38: (3,1,2)         57: (1,1,3,1)
      3: (1,1)           39: (3,1,1,1)       58: (1,1,2,2)
      4: (3)             41: (2,3,1)         59: (1,1,2,1,1)
      7: (1,1,1)         42: (2,2,2)         60: (1,1,1,3)
      8: (4)             43: (2,2,1,1)       61: (1,1,1,2,1)
     10: (2,2)           44: (2,1,3)         62: (1,1,1,1,2)
     11: (2,1,1)         45: (2,1,2,1)       63: (1,1,1,1,1,1)
     13: (1,2,1)         46: (2,1,1,2)       64: (7)
     14: (1,1,2)         47: (2,1,1,1,1)    127: (1,1,1,1,1,1,1)
     15: (1,1,1,1)       50: (1,3,2)        128: (8)
     16: (5)             51: (1,3,1,1)      136: (4,4)
     31: (1,1,1,1,1)     52: (1,2,3)        138: (4,2,2)
     32: (6)             53: (1,2,2,1)      139: (4,2,1,1)
		

Crossrefs

Looking at length instead of parts gives A096199.
These composition are counted by A100346.
A version counting subsets instead of compositions is A125297.
An unordered version is A326841, counted by A018818.
A011782 counts compositions.
A316413 ranks partitions with sum divisible by length, counted by A067538.
A319333 ranks partitions with sum equal to lcm, counted by A074761.
Statistics of standard compositions:
- The compositions themselves are the rows of A066099.
- Number of parts is given by A000120, distinct A334028.
- Sum and product of parts are given by A070939 and A124758.
- Maximum and minimum parts are given by A333766 and A333768.
Classes of standard compositions:
- Partitions and strict partitions are ranked by A114994 and A333256.
- Multisets and sets are ranked by A225620 and A333255.
- Strict and constant compositions are ranked by A233564 and A272919.
- Permutations are ranked by A333218.
- Relatively prime compositions are ranked by A291166*, complement A291165.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],#==0||Divisible[Total[stc[#]],LCM@@stc[#]]&]
Previous Showing 61-65 of 65 results.