cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A349051 Numbers k such that the k-th composition in standard order is an alternating permutation of {1..k} for some k.

Original entry on oeis.org

0, 1, 5, 6, 38, 41, 44, 50, 553, 562, 582, 593, 610, 652, 664, 708, 788, 808, 16966, 17036, 17048, 17172, 17192, 17449, 17458, 17542, 17676, 17712, 17940, 18000, 18513, 18530, 18593, 18626, 18968, 18992, 19496, 19536, 20625, 20676, 20769, 20868, 21256, 22600
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The sequence together with the corresponding compositions begins:
        0: ()
        1: (1)
        5: (2,1)
        6: (1,2)
       38: (3,1,2)
       41: (2,3,1)
       44: (2,1,3)
       50: (1,3,2)
      553: (4,2,3,1)
      562: (4,1,3,2)
      582: (3,4,1,2)
      593: (3,2,4,1)
      610: (3,1,4,2)
      652: (2,4,1,3)
      664: (2,3,1,4)
      708: (2,1,4,3)
      788: (1,4,2,3)
      808: (1,3,2,4)
    16966: (5,3,4,1,2)
    17036: (5,2,4,1,3)
		

Crossrefs

These permutations are counted by A001250, complement A348615.
Compositions of this type are counted by A025047, complement A345192.
Subset of A333218, which ranks permutations of initial intervals.
Subset of A345167, which ranks alternating compositions, complement A345168.
A003242 counts Carlitz (anti-run) compositions.
A345163 counts normal partitions with an alternating permutation.
A345164 counts alternating permutations of prime indices.
A345170 counts partitions with an alternating permutation.
Compositions in standard order are the rows of A066099:
- Number of parts is given by A000120, distinct A334028.
- Sum and product of parts are given by A070939 and A124758.
- Maximum and minimum parts are given by A333766 and A333768.
- GCD and LCM are given by A326674 and A333226.
- Maximal runs and anti-runs are counted by A124767 and A333381.
- Heinz number is given by A333219.
- Runs-resistance is given by A333628.
- Partitions and strict partitions are ranked by A114994 and A333256.
- Multisets and sets are ranked by A225620 and A333255.
- Strict and constant compositions are ranked by A233564 and A272919.
- Carlitz (anti-run) compositions are ranked by A333489.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Select[Range[0,1000],Sort[stc[#]]==Range[Length[stc[#]]]&&wigQ[stc[#]]&]

Formula

Equals A333218 (permutation) /\ A345167 (alternating).

A124761 Number of falls for compositions in standard order.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0
Offset: 0

Views

Author

Keywords

Comments

The standard order of compositions is given by A066099.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. a(n) is one fewer than the number of maximal weakly increasing runs in this composition. Alternatively, a(n) is the number of strict descents in the same composition. For example, the weakly increasing of runs of the 1234567th composition are ((3),(2),(1,2,2),(1,2,5),(1,1,1)), so a(1234567) = 5 - 1 = 4. The 4 strict descents together with the weak ascents are: 3 > 2 > 1 <= 2 <= 2 > 1 <= 2 <= 5 > 1 <= 1 <= 1. - Gus Wiseman, Apr 08 2020

Examples

			Composition number 11 is 2,1,1; 2>1<=1, so a(11) = 1.
The table starts:
  0
  0
  0 0
  0 1 0 0
  0 1 0 1 0 1 0 0
  0 1 1 1 0 1 1 1 0 1 0 1 0 1 0 0
  0 1 1 1 0 2 1 1 0 1 0 1 1 2 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 0 0
		

Crossrefs

Cf. A066099, A124760, A124763, A124764, A011782 (row lengths), A045883 (row sums), A333213, A333220, A333379.
Positions of zeros are A225620.
Compositions of n with k strict descents are A238343.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Weakly decreasing compositions are A114994.
- Adjacent equal pairs are counted by A124762.
- Weakly decreasing runs are counted by A124765.
- Weakly increasing runs are counted by A124766.
- Equal runs are counted by A124767.
- Strictly increasing runs are counted by A124768.
- Strictly decreasing runs are counted by A124769.
- Weakly increasing compositions are A225620.
- Reverse is A228351 (triangle).
- Strict compositions are A233564.
- Initial intervals are A246534.
- Constant compositions are A272919.
- Normal compositions are A333217.
- Permutations are A333218.
- Strictly decreasing compositions are A333255.
- Strictly increasing compositions are A333256.
- Runs-resistance is A333628.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Select[Partition[stc[n],2,1],Greater@@#&]],{n,0,100}] (* Gus Wiseman, Apr 08 2020 *)

Formula

For a composition b(1),...,b(k), a(n) = Sum_{1<=i=1b(i+1)} 1.
For n > 0, a(n) = A124766(n) - 1. - Gus Wiseman, Apr 08 2020

A353402 Numbers k such that the k-th composition in standard order has its own run-lengths as a subsequence (not necessarily consecutive).

Original entry on oeis.org

0, 1, 10, 21, 26, 43, 53, 58, 107, 117, 174, 186, 292, 314, 346, 348, 349, 373, 430, 442, 570, 585, 586, 629, 676, 693, 696, 697, 698, 699, 804, 826, 858, 860, 861, 885, 954, 1082, 1141, 1173, 1210, 1338, 1353, 1387, 1392, 1393, 1394, 1396, 1397, 1398, 1466
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Comments

First differs from A353432 (the consecutive case) in having 0 and 53.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms, their binary expansions, and the corresponding standard compositions:
    0:          0  ()
    1:          1  (1)
   10:       1010  (2,2)
   21:      10101  (2,2,1)
   26:      11010  (1,2,2)
   43:     101011  (2,2,1,1)
   53:     110101  (1,2,2,1)
   58:     111010  (1,1,2,2)
  107:    1101011  (1,2,2,1,1)
  117:    1110101  (1,1,2,2,1)
  174:   10101110  (2,2,1,1,2)
  186:   10111010  (2,1,1,2,2)
  292:  100100100  (3,3,3)
  314:  100111010  (3,1,1,2,2)
  346:  101011010  (2,2,1,2,2)
  348:  101011100  (2,2,1,1,3)
  349:  101011101  (2,2,1,1,2,1)
  373:  101110101  (2,1,1,2,2,1)
  430:  110101110  (1,2,2,1,1,2)
  442:  110111010  (1,2,1,1,2,2)
		

Crossrefs

The version for partitions is A325755, counted by A325702.
These compositions are counted by A353390.
The recursive version is A353431, counted by A353391.
The consecutive case is A353432, counted by A353392.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order, reverse A228351.
A333769 lists run-lengths of compositions in standard order.
Words with all distinct run-lengths: A032020, A044813, A098859, A130091, A329739, A351017.
Statistics of standard compositions:
- Length is A000120, sum A070939.
- Runs are counted by A124767, distinct A351014.
- Subsequences are counted by A334299, consecutive A124770/A124771.
- Runs-resistance is A333628.
Classes of standard compositions:
- Partitions are A114994, strict A333255, rev A225620, strict rev A333256.
- Runs are A272919.
- Golomb rulers are A333222, counted by A169942.
- Knapsack compositions are A333223, counted by A325676.
- Anti-runs are A333489, counted by A003242.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    rosQ[y_]:=Length[y]==0||MemberQ[Subsets[y],Length/@Split[y]];
    Select[Range[0,100],rosQ[stc[#]]&]

A353431 Numbers k such that the k-th composition in standard order is empty, a singleton, or has its own run-lengths as a subsequence (not necessarily consecutive) that is already counted.

Original entry on oeis.org

0, 1, 2, 4, 8, 10, 16, 32, 43, 58, 64, 128, 256, 292, 349, 442, 512, 586, 676, 697, 826, 1024, 1210, 1338, 1393, 1394, 1396, 1594, 2048, 2186, 2234, 2618, 2696, 2785, 2786, 2792, 3130, 4096, 4282, 4410, 4666, 5178, 5569, 5570, 5572, 5576, 5584, 6202, 8192
Offset: 1

Views

Author

Gus Wiseman, May 16 2022

Keywords

Comments

First differs from A353696 (the consecutive version) in having 22318, corresponding to the binary word 101011100101110 and standard composition (2,2,1,1,3,2,1,1,2), whose run-lengths (2,2,1,1,2,1) are subsequence but not a consecutive subsequence.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms, their binary expansions, and the corresponding standard compositions:
     0:           0  ()
     1:           1  (1)
     2:          10  (2)
     4:         100  (3)
     8:        1000  (4)
    10:        1010  (2,2)
    16:       10000  (5)
    32:      100000  (6)
    43:      101011  (2,2,1,1)
    58:      111010  (1,1,2,2)
    64:     1000000  (7)
   128:    10000000  (8)
   256:   100000000  (9)
   292:   100100100  (3,3,3)
   349:   101011101  (2,2,1,1,2,1)
   442:   110111010  (1,2,1,1,2,2)
   512:  1000000000  (10)
   586:  1001001010  (3,3,2,2)
   676:  1010100100  (2,2,3,3)
   697:  1010111001  (2,2,1,1,3,1)
		

Crossrefs

The non-recursive version for partitions is A325755, counted by A325702.
These compositions are counted by A353391.
The version for partitions A353393, counted by A353426, w/o primes A353389.
The non-recursive version is A353402, counted by A353390.
The non-recursive consecutive case is A353432, counted by A353392.
The consecutive case is A353696, counted by A353430.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order, rev A228351, run-lens A333769.
A329738 counts uniform compositions, partitions A047966.
Statistics of standard compositions:
- Length is A000120, sum A070939.
- Runs are counted by A124767, distinct A351014.
- Subsequences are counted by A334299, contiguous A124770/A124771.
- Runs-resistance is A333628.
Classes of standard compositions:
- Partitions are A114994, multisets A225620, strict A333255, sets A333256.
- Constant compositions are A272919, counted by A000005.
- Golomb rulers are A333222, counted by A169942.
- Knapsack compositions are A333223, counted by A325676.
- Anti-runs are A333489, counted by A003242.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    rorQ[y_]:=Length[y]<=1||MemberQ[Subsets[y],Length/@Split[y]]&& rorQ[Length/@Split[y]];
    Select[Range[0,100],rorQ[stc[#]]&]

A353432 Numbers k such that the k-th composition in standard order has its own run-lengths as a consecutive subsequence.

Original entry on oeis.org

0, 1, 10, 21, 26, 43, 58, 107, 117, 174, 186, 292, 314, 346, 348, 349, 373, 430, 442, 570, 585, 586, 629, 676, 696, 697, 804, 826, 860, 861, 885, 1082, 1141, 1173, 1210, 1338, 1387, 1392, 1393, 1394, 1396, 1594, 1653, 1700, 1720, 1721, 1882, 2106, 2165, 2186
Offset: 1

Views

Author

Gus Wiseman, May 16 2022

Keywords

Comments

First differs from A353402 (the non-consecutive version) in lacking 53.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms, their binary expansions, and the corresponding standard compositions:
     0:          0  ()
     1:          1  (1)
    10:       1010  (2,2)
    21:      10101  (2,2,1)
    26:      11010  (1,2,2)
    43:     101011  (2,2,1,1)
    58:     111010  (1,1,2,2)
   107:    1101011  (1,2,2,1,1)
   117:    1110101  (1,1,2,2,1)
   174:   10101110  (2,2,1,1,2)
   186:   10111010  (2,1,1,2,2)
   292:  100100100  (3,3,3)
   314:  100111010  (3,1,1,2,2)
   346:  101011010  (2,2,1,2,2)
   348:  101011100  (2,2,1,1,3)
   349:  101011101  (2,2,1,1,2,1)
   373:  101110101  (2,1,1,2,2,1)
   430:  110101110  (1,2,2,1,1,2)
   442:  110111010  (1,2,1,1,2,2)
		

Crossrefs

These compositions are counted by A353392.
This is the consecutive case of A353402, counted by A353390.
The non-consecutive recursive version is A353431, counted by A353391.
The recursive version is A353696, counted by A353430.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order, rev A228351, run-lens A333769.
A329738 counts uniform compositions, partitions A047966.
Statistics of standard compositions:
- Length is A000120, sum A070939.
- Runs are counted by A124767, distinct A351014.
- Subsequences are counted by A334299, contiguous A124770/A124771.
- Runs-resistance is A333628.
Classes of standard compositions:
- Partitions are A114994, strict A333255, rev A225620, strict rev A333256.
- Runs are A272919, counted by A000005.
- Golomb rulers are A333222, counted by A169942.
- Anti-runs are A333489, counted by A003242.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    rorQ[y_]:=Length[y]==0||MemberQ[Join@@Table[Take[y,{i,j}],{i,Length[y]},{j,i,Length[y]}],Length/@Split[y]];
    Select[Range[0,10000],rorQ[stc[#]]&]

A353427 Numbers k such that the k-th composition in standard order has all run-lengths > 1.

Original entry on oeis.org

0, 3, 7, 10, 15, 31, 36, 42, 43, 58, 63, 87, 122, 127, 136, 147, 170, 171, 175, 228, 234, 235, 250, 255, 292, 295, 343, 351, 471, 484, 490, 491, 506, 511, 528, 547, 586, 591, 676, 682, 683, 687, 698, 703, 904, 915, 938, 939, 943, 983, 996, 1002, 1003, 1018
Offset: 1

Views

Author

Gus Wiseman, May 16 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and corresponding compositions begin:
     0: ()
     3: (1,1)
     7: (1,1,1)
    10: (2,2)
    15: (1,1,1,1)
    31: (1,1,1,1,1)
    36: (3,3)
    42: (2,2,2)
    43: (2,2,1,1)
    58: (1,1,2,2)
    63: (1,1,1,1,1,1)
    87: (2,2,1,1,1)
   122: (1,1,1,2,2)
   127: (1,1,1,1,1,1,1)
		

Crossrefs

The version for partitions is A001694, counted by A007690.
The version for parts instead of lengths is A022340, counted by A212804.
These compositions are counted by A114901.
A subset of A348612 (counted by A261983).
The case of all run-lengths = 2 is A351011.
The case of all run-lengths > 2 is counted by A353400.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order, reverse A228351.
Statistics of standard compositions:
- Length is A000120, sum A070939.
- Runs are counted by A124767.
- Runs-resistance is A333628.
- Run-lengths are A333769.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!MemberQ[Length/@Split[stc[#]],1]&]

A333629 Least k such that the runs-resistance of the k-th composition in standard order is n.

Original entry on oeis.org

1, 3, 5, 11, 27, 93, 859, 13789, 1530805, 1567323995
Offset: 0

Views

Author

Gus Wiseman, Mar 31 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.
For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton.

Examples

			The sequence together with the corresponding compositions begins:
        1: (1)
        3: (1,1)
        5: (2,1)
       11: (2,1,1)
       27: (1,2,1,1)
       93: (2,1,1,2,1)
      859: (1,2,2,1,2,1,1)
    13789: (1,2,2,1,1,2,1,1,2,1)
  1530805: (2,1,1,2,2,1,2,1,1,2,1,2,2,1)
For example, starting with 13789 and repeatedly applying A333627 gives: 13789 -> 859 -> 110 -> 29 -> 11 -> 6 -> 3 -> 2, corresponding to the compositions: (1,2,2,1,1,2,1,1,2,1) -> (1,2,2,1,2,1,1) -> (1,2,1,1,2) -> (1,1,2,1) -> (2,1,1) -> (1,2) -> (1,1) -> (2).
		

Crossrefs

Positions of first appearances in A333628 = number of times applying A333627 to reach a power of 2, starting with n.
A subsequence of A333630.
All of the following pertain to compositions in standard order (A066099):
- The length is A000120.
- The partial sums from the right are A048793.
- The sum is A070939.
- Adjacent equal pairs are counted by A124762.
- Equal runs are counted by A124767.
- Strict compositions are ranked by A233564.
- The partial sums from the left are A272020.
- Constant compositions are ranked by A272919.
- Normal compositions are ranked by A333217.
- Heinz number is A333219.
- Anti-runs are counted by A333381.
- Adjacent unequal pairs are counted by A333382.

Programs

  • Mathematica
    nn=1000;
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcrun[n_]:=Total[2^(Accumulate[Reverse[Length/@Split[stc[n]]]])]/2;
    seq=Table[Length[NestWhileList[stcrun,n,Length[stc[#]]>1&]]-1,{n,nn}];
    Table[Position[seq,i][[1,1]],{i,Union[seq]}]

Extensions

a(9) from Amiram Eldar, Aug 04 2025

A333630 Least STC-number of a composition whose sequence of run-lengths has STC-number n.

Original entry on oeis.org

0, 1, 3, 5, 7, 14, 11, 13, 15, 30, 43, 29, 23, 46, 27, 45, 31, 62, 122, 61, 87, 117, 59, 118, 47, 94, 107, 93, 55, 110, 91, 109, 63, 126, 250, 125, 343, 245, 123, 246, 175, 350, 235, 349, 119, 238, 347, 237, 95, 190, 378, 189, 215, 373, 187, 374, 111, 222, 363
Offset: 0

Views

Author

Gus Wiseman, Mar 31 2020

Keywords

Comments

All terms belong to A003754.
A composition of n is a finite sequence of positive integers summing to n. The composition with STC-number k (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
   0: ()
   1: (1)
   3: (1,1)
   5: (2,1)
   7: (1,1,1)
  14: (1,1,2)
  11: (2,1,1)
  13: (1,2,1)
  15: (1,1,1,1)
  30: (1,1,1,2)
  43: (2,2,1,1)
  29: (1,1,2,1)
  23: (2,1,1,1)
  46: (2,1,1,2)
  27: (1,2,1,1)
  45: (2,1,2,1)
  31: (1,1,1,1,1)
  62: (1,1,1,1,2)
		

Crossrefs

Position of first appearance of n in A333627.
All of the following pertain to compositions in standard order (A066099):
- The length is A000120.
- Compositions without terms > 2 are A003754.
- Compositions without ones are ranked by A022340.
- The partial sums from the right are A048793.
- The sum is A070939.
- Adjacent equal pairs are counted by A124762.
- Equal runs are counted by A124767.
- Strict compositions are ranked by A233564.
- The partial sums from the left are A272020.
- Constant compositions are ranked by A272919.
- Normal compositions are ranked by A333217.
- Heinz number is A333219.
- Anti-runs are counted by A333381.
- Adjacent unequal pairs are counted by A333382.
- Runs-resistance is A333628.
- First appearances of run-resistances are A333629.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    seq=Table[Total[2^(Accumulate[Reverse[Length/@Split[stc[n]]]])]/2,{n,0,1000}];
    Table[Position[seq,i][[1,1]],{i,First[Split[Union[seq],#1+1==#2&]]}]-1

A337565 Irregular triangle read by rows where row k is the sequence of maximal anti-run lengths in the k-th composition in standard order.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 3, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 3, 4, 2, 2, 2, 1, 1, 1, 2, 3, 3
Offset: 0

Views

Author

Gus Wiseman, Sep 07 2020

Keywords

Comments

An anti-run is a sequence with no adjacent equal parts.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The first column below lists various selected n; the second column gives the corresponding composition; the third column gives the corresponding row of the triangle, i.e., the anti-run lengths.
    1:           (1) -> (1)
    3:         (1,1) -> (1,1)
    5:         (2,1) -> (2)
    7:       (1,1,1) -> (1,1,1)
   11:       (2,1,1) -> (2,1)
   13:       (1,2,1) -> (3)
   14:       (1,1,2) -> (1,2)
   15:     (1,1,1,1) -> (1,1,1,1)
   23:     (2,1,1,1) -> (2,1,1)
   27:     (1,2,1,1) -> (3,1)
   29:     (1,1,2,1) -> (1,3)
   30:     (1,1,1,2) -> (1,1,2)
   31:   (1,1,1,1,1) -> (1,1,1,1,1)
   43:     (2,2,1,1) -> (1,2,1)
   45:     (2,1,2,1) -> (4)
   46:     (2,1,1,2) -> (2,2)
   47:   (2,1,1,1,1) -> (2,1,1,1)
   55:   (1,2,1,1,1) -> (3,1,1)
   59:   (1,1,2,1,1) -> (1,3,1)
   61:   (1,1,1,2,1) -> (1,1,3)
   62:   (1,1,1,1,2) -> (1,1,1,2)
   63: (1,1,1,1,1,1) -> (1,1,1,1,1,1)
For example, the 119th composition is (1,1,2,1,1,1), with maximal anti-runs ((1),(1,2,1),(1),(1)), so row 119 is (1,3,1,1).
		

Crossrefs

A000120 gives row sums.
A333381 gives row lengths.
A333769 is the version for runs.
A003242 counts anti-run compositions.
A011782 counts compositions.
A106351 counts anti-run compositions by length.
A329744 is a triangle counting compositions by runs-resistance.
A333755 counts compositions by number of runs.
All of the following pertain to compositions in standard order (A066099):
- Sum is A070939.
- Adjacent equal pairs are counted by A124762.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Patterns are A333217.
- Heinz number is A333219.
- Anti-runs are counted by A333381.
- Anti-run compositions are A333489.
- Runs-resistance is A333628.
- Combinatory separations are A334030.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length/@Split[stc[n],UnsameQ],{n,0,50}]

A333767 Length of shortest run of zeros after a one in the binary expansion of n. a(0) = 0.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 0, 4, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 1, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 1, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 06 2020

Keywords

Examples

			The binary expansion of 148 is (1,0,0,1,0,1,0,0), so a(148) = 1.
		

Crossrefs

Positions of first appearances (ignoring index 0) are A000079.
Positions of terms > 0 are A022340.
Minimum prime index is A055396.
The maximum part minus 1 is given by A087117.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Compositions without 1's are A022340.
- Sum is A070939.
- Product is A124758.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Runs-resistance is A333628.
- Maximum is A333766.
- Minimum is A333768.
- Weakly decreasing compositions are A114994.
- Weakly increasing compositions are A225620.
- Strictly decreasing compositions are A333255.
- Strictly increasing compositions are A333256.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[If[n==0,0,Min@@stc[n]-1],{n,0,100}]

Formula

For n > 0, a(n) = A333768(n) - 1.
Previous Showing 21-30 of 31 results. Next