cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A375407 Numbers k such that the k-th composition in standard order (row k of A066099) matches both of the dashed patterns 23-1 and 1-32.

Original entry on oeis.org

421, 649, 802, 809, 837, 843, 933, 1289, 1299, 1330, 1445, 1577, 1602, 1605, 1617, 1619, 1669, 1673, 1675, 1685, 1686, 1687, 1701, 1826, 1833, 1861, 1867, 1957, 2469, 2569, 2577, 2579, 2597, 2598, 2599, 2610, 2658, 2661, 2674, 2697, 2850, 2857, 2885, 2891
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2024

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
These are also numbers k such that:
(1) the maximal weakly increasing runs in the reverse of the k-th composition in standard order do not have weakly decreasing leaders, and
(2) the maximal weakly increasing runs in the k-th composition in standard order do not have weakly decreasing leaders.

Examples

			Composition 89 is (2,1,3,1), which matches 2-3-1 but not 23-1.
Composition 165 is (2,3,2,1), which matches 23-1 but not 231.
Composition 358 is (2,1,3,1,2), which matches 2-3-1 and 1-3-2 but not 23-1 or 1-32.
The sequence together with corresponding compositions begins:
   421: (1,2,3,2,1)
   649: (2,4,3,1)
   802: (1,3,4,2)
   809: (1,3,2,3,1)
   837: (1,2,4,2,1)
   843: (1,2,3,2,1,1)
   933: (1,1,2,3,2,1)
  1289: (2,5,3,1)
  1299: (2,4,3,1,1)
  1330: (2,3,1,3,2)
  1445: (2,1,2,3,2,1)
  1577: (1,4,2,3,1)
  1602: (1,3,5,2)
  1605: (1,3,4,2,1)
  1617: (1,3,2,4,1)
  1619: (1,3,2,3,1,1)
		

Crossrefs

The non-dashed version is the intersection of A335482 and A335480.
Compositions of this type are counted by A375297.
For leaders of identical runs we have A375408, counted by A332834.
A003242 counts anti-runs, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335486 ranks compositions matching 21, reverse A335485.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Leader is A065120.
- Parts are listed by A066099, reverse A228351.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Run-length transform is A333627, sum A070939.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],MatchQ[stc[#],{_,y_,z_,_,x_,_}/;x_,x_,_,z_,y_,_}/;x
    				

Formula

Intersection of A375138 and A375137.

A375408 Numbers k such that the k-th composition in standard order is not weakly increasing or weakly decreasing.

Original entry on oeis.org

13, 22, 25, 27, 29, 38, 41, 44, 45, 46, 49, 50, 51, 53, 54, 55, 57, 59, 61, 70, 76, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 92, 93, 94, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 110, 111, 113, 114, 115, 117, 118, 119, 121, 123, 125, 134, 140, 141, 142
Offset: 1

Views

Author

Gus Wiseman, Sep 18 2024

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and corresponding compositions begin:
  13: (1,2,1)
  22: (2,1,2)
  25: (1,3,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  38: (3,1,2)
  41: (2,3,1)
  44: (2,1,3)
  45: (2,1,2,1)
  46: (2,1,1,2)
  49: (1,4,1)
  50: (1,3,2)
  51: (1,3,1,1)
  53: (1,2,2,1)
  54: (1,2,1,2)
  55: (1,2,1,1,1)
  57: (1,1,3,1)
  59: (1,1,2,1,1)
		

Crossrefs

The version for run-lengths of compositions is A332833.
Compositions of this type are counted by A332834, complement maybe A329398.
A001523 counts unimodal compositions, ranks too dense.
A011782 counts compositions.
A114994 ranks weakly decreasing compositions, complement A335485.
A115981 counts non-unimodal compositions, ranked by A335373.
A225620 ranks weakly increasing compositions, complement A335486.
A238130, A238279, A333755 count compositions by number of runs.
A332835 counts compositions with weakly incr. or weakly decr. run-lengths.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of strict compositions are A233564.
- Ranks of constant compositions are A272919.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!LessEqual@@stc[#]&&!GreaterEqual@@stc[#]&]

Formula

Intersection of A335485 and A335486.
Previous Showing 11-12 of 12 results.