A381583 Starts of runs of 3 consecutive integers that are all terms in A381581.
1, 2, 20, 55, 56, 110, 304, 364, 398, 846, 1024, 1084, 1744, 1854, 2044, 2104, 2105, 2527, 2824, 2862, 3870, 4374, 5222, 5223, 5243, 5718, 5928, 6488, 6784, 6844, 6894, 6978, 7142, 7924, 10590, 11240, 11889, 11975, 12248, 14284, 14915, 16638, 17710, 17714, 17824
Offset: 1
Examples
1 is a term since A291711(1) = 1 divides 1, A291711(2) = 2 divides 2, and A291711(3) = 1 divides 3. 20 is a term since A291711(20) = 4 divides 20, A291711(21) = 1 divides 21, and A291711(22) = 2 divides 22.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[n_] := f[n] = Fibonacci[2*n]; q[n_] := q[n] = Module[{s = 0, m = n, k}, While[m > 0, k = 1; While[m > f[k], k++]; If[m < f[k], k--]; If[m >= 2*f[k], s += 2; m -= 2*f[k], s++; m -= f[k]]]; Divisible[n, s]]; seq[count_, nConsec_] := Module[{cn = q /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ cn, c++; AppendTo[s, k - nConsec]]; cn = Join[Rest[cn], {q[k]}]; k++]; s]; seq[45, 3]
-
PARI
mx = 20; fvec = vector(mx, i, fibonacci(2*i)); f(n) = if(n <= mx, fvec[n], fibonacci(2*n)); is1(n) = {my(s = 0, m = n, k); while(m > 0, k = 1; while(m > f(k), k++); if(m < f(k), k--); if(m >= 2*f(k), s += 2; m -= 2*f(k), s++; m -= f(k))); !(n % s);} list(lim) = {my(q1 = is1(1), q2 = is1(2), q3); for(k = 3, lim, q3 = is1(k); if(q1 && q2 && q3, print1(k-2, ", ")); q1 = q2; q2 = q3);}
Comments