cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A364124 Numbers k such that k and k+1 are both Stolarsky-Niven numbers (A364123).

Original entry on oeis.org

8, 56, 84, 159, 195, 224, 384, 399, 405, 995, 1140, 1224, 1245, 1295, 1309, 1419, 1420, 1455, 1474, 1507, 2585, 2597, 2600, 2680, 2681, 2727, 2744, 2750, 2799, 2855, 3122, 3311, 3339, 3345, 3618, 3707, 3795, 4004, 6770, 6774, 6984, 6985, 7014, 7074, 7154, 7405
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    seq[count_, nConsec_] := Module[{cn = stolNivQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ cn, c++; AppendTo[s, k - nConsec]]; cn = Join[Rest[cn], {stolNivQ[k]}]; k++]; s]; seq[50, 2] (* using the function stolNivQ[n] from A364123 *)
  • PARI
    lista(count, nConsec) = {my(cn = vector(nConsec, i, isStolNivQ(i)), c = 0, k = nConsec + 1); while(c < count, if(vecsum(cn) == nConsec, c++; print1(k-nConsec, ", ")); cn = concat(vecextract(cn, "^1"), isStolNivQ(k)); k++);} \\ using the function isA364123(n) from A364123
    lista(50, 2)

A376029 Tribonacci-Niven numbers (A352089) with a record gap to the next tribonacci-Niven number.

Original entry on oeis.org

1, 2, 8, 48, 140, 244, 620, 705, 1395, 6210, 9656, 14322, 52024, 88128, 95589, 119440, 151130, 325105, 407128, 472790, 520971, 686103, 4456608, 7066416, 13207389, 15488160, 23381160, 42317212, 49496700, 53564016, 128163495, 165750096, 387900480, 421730960, 485880806
Offset: 1

Views

Author

Amiram Eldar, Sep 06 2024

Keywords

Comments

The corresponding record gaps are 1, 2, 4, 8, 9, 12, 15, 20, ... (see the link for more values).
Ray (2005) and Ray and Cooper (2006) proved that the asymptotic density of the tribonacci-Niven numbers is 0. Therefore, this sequence is infinite.

Examples

			The first 7 tribonacci-Niven numbers are 1, 2, 4, 6, 7, 8 and 12. The gaps between them are 1, 2, 2, 1, 1 and 4, and the record gaps, 1, 2 and 4 occur after 1, 2 and 8, the first 3 terms of this sequence.
		

References

  • Andrew B. Ray, On the natural density of the k-Zeckendorf Niven numbers, Ph.D. dissertation, Central Missouri State University, 2005.

Crossrefs

Similar sequences: A337076, A337077, A347495, A347496, A376028.

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; tnQ[n_] := Module[{s = 0, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; s++; m -= t[k]; k = 1]; Divisible[n, s]]; seq[kmax_] := Module[{gapmax = 0, gap, k1 = 1, s = {}}, Do[If[tnQ[k], gap = k - k1; If[gap > gapmax, gapmax = gap; AppendTo[s, k1]]; k1 = k], {k, 2, kmax}]; s]; seq[10^4]
Previous Showing 11-12 of 12 results.