A354767 Indices of terms in A354169 that have Hamming weight 1.
1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 26, 27, 28, 30, 32, 34, 35, 36, 38, 39, 40, 42, 44, 46, 47, 48, 50, 51, 52, 54, 56, 57, 58, 60, 62, 63, 64, 66, 68, 70, 71, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 87, 88, 90, 92, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 116
Offset: 1
Keywords
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..3296
- Michael De Vlieger, Thomas Scheuerle, Rémy Sigrist, N. J. A. Sloane, and Walter Trump, The Binary Two-Up Sequence, arXiv:2209.04108 [math.CO], Sep 11 2022.
- N. J. A. Sloane, A conjectured generating function for A354169.
Formula
Conjecture from N. J. A. Sloane, Jun 30 2022, modified Jul 30 2022: (Start)
We first define a sequence {b(n)} as follows.
Define "fence posts" by F(0) = 1, F(2i+1) = 2^(i+5) - 3 for i >= 0, F(2i) = 3*2^(i+3) - 3 for i >= 1.
The value of b(n) at n = F(i) is V(i) = 0 if i = 0, V(i) =(F(i)-7)/2 if i >= 1.
The V(i) sequence begins 0, 11, 19, 27, 43, 59, 91, 123, 187, 251, ...
The first 28 terms are irregular, and we simply define b(n) for F(0) = 1 <= n <= 28 to be the n-th term of
[0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6, 6, 7, 7, 7, 8, 9, 10, 10, 10, 11, 11].
Assume now that n >= F(1) = 29, and define i and j by F(i) <= n < F(i+1), n = F(i) + j.
Then b(n) = V(i) + f(j), where f(0) ... f(5) are 0,1,2,3,3,3, and for j >= 6, f(j) = 2 + 2*floor((j-2)/4) + epsilon(j), where epsilon(j) is 1 if j==1 mod 4 and is otherwise 0.
The f(i), i >= 0, sequence (A354779) is independent of n (to find b(n) we use only an initial segment of f(n)), and begins:
0, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 8, 8, 8, 9, 10, 10, 10, 11, 12, 12, 12, 13, 14, ...
With b(n) defined in this way, we conjecture that a(n) = b(n) + n. This has been checked for the first 3296 terms.
(End)
The conjecture is now known to be true. - N. J. A. Sloane, Aug 29 2022
Comments