A375160 Square array T(n, k), n >= 2 and k >= 1, read by antidiagonals in ascending order, give the smallest number that starts a sequence of exactly k consecutive numbers each having exactly n prime factors (counted with multiplicity), or -1 if no such number exists.
4, 8, 9, 16, 27, 33, 32, 135, 170, -1, 64, 944, 1274, 603, -1, 128, 5264, 15470, 4023, 602, -1, 256, 29888, 33614, 57967, 12122, 2522, -1, 512, 50624, 3145310, 8706123, 632148, 204323, 211673, -1
Offset: 2
Examples
T(2,3) = 33 = 3*11, because both 34 and 35 have the same number of prime factors. Thus, 33 is the starting number of a run of 3 numbers that each have 2 prime factors (counted with multiplicity). No lesser number has this property, so T(2,3) = 33. Table begins (upper left corner = T(2,1)): 4 9 33 -1 ... 8 27 170 603 ... 16 135 1274 4023 ... 32 944 15470 57967 ... ... ... ... ... ...
Comments