A358302 Number of triangular regions in the Farey Diagram Farey(n,n), divided by 4.
1, 12, 100, 392, 1554, 3486, 9690, 18942, 38610, 65268, 125116, 186870, 324646, 472546, 713354, 1003888, 1531908, 2000638, 2920970, 3780950
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
The full array T(n,k), n >= 0, k>= 0, begins: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, ... 0, 5, 10, 19, 27, 40, 51, 68, 82, 103, 120, 145, ... 0, 9, 19, 32, 47, 68, 85, 112, 137, 166, 196, 235, ... 0, 14, 27, 47, 66, 96, 118, 156, 187, 229, 266, ... 0, 20, 40, 68, 96, 134, 167, 217, 261, 317, 366, ... 0, 27, 51, 85, 118, 167, 204, 267, 318, 384, 441, ...
A005728 := proc(n) 1+add(numtheory[phi](i), i=1..n) ; end proc: # called F_n in the paper Amn:=proc(m,n) local a,i,j; # A331781 or equally A333295. Diagonal is A018805. a:=0; for i from 1 to m do for j from 1 to n do if igcd(i,j)=1 then a:=a+1; fi; od: od: a; end; DFD:=proc(m,n) local d,t1,u,v; global A005728, Amn; t1:=0; for u from 1 to m do for v from 1 to n do d:=igcd(u,v); if d>=1 then t1:=t1 + (u+v)*numtheory[phi](d)/d; fi; od: od: t1; end; for m from 0 to 8 do lprint([seq(DFD(m,n),n=0..20)]); od:
T[n_, k_] := Sum[d = GCD[u, v]; If[d >= 1, (u+v)*EulerPhi[d]/d, 0], {u, 1, n}, {v, 1, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 18 2023 *)
Comments