A362048
Number of integer partitions of n such that (length) <= 2*(median).
Original entry on oeis.org
1, 2, 2, 3, 4, 6, 8, 12, 15, 20, 25, 33, 41, 53, 66, 85, 105, 134, 164, 205, 250, 308, 373, 456, 549, 666, 799, 963, 1152, 1382, 1645, 1965, 2330, 2767, 3269, 3865, 4546, 5353, 6274, 7357, 8596, 10046, 11700, 13632, 15834, 18394, 21312, 24690, 28534, 32974
Offset: 1
The a(1) = 1 through a(9) = 15 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(11) (21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(221) (51) (61) (62) (72)
(222) (322) (71) (81)
(321) (331) (332) (333)
(421) (422) (432)
(2221) (431) (441)
(521) (522)
(2222) (531)
(3221) (621)
(3311) (3222)
(3321)
(4221)
(4311)
For maximum instead of median we have
A237755.
For minimum instead of median we have
A237800.
For maximum instead of length we have
A361848.
A000975 counts subsets with integer median.
A363133
Numbers > 1 whose prime indices satisfy 2*(minimum) = (mean).
Original entry on oeis.org
10, 28, 30, 39, 84, 88, 90, 100, 115, 171, 208, 252, 255, 259, 264, 270, 273, 280, 300, 363, 517, 544, 624, 756, 783, 784, 792, 793, 810, 840, 880, 900, 925, 1000, 1035, 1085, 1197, 1216, 1241, 1425, 1495, 1521, 1595, 1615, 1632, 1683, 1691, 1785, 1872, 1911
Offset: 1
The terms together with their prime indices begin:
10: {1,3}
28: {1,1,4}
30: {1,2,3}
39: {2,6}
84: {1,1,2,4}
88: {1,1,1,5}
90: {1,2,2,3}
100: {1,1,3,3}
115: {3,9}
171: {2,2,8}
208: {1,1,1,1,6}
252: {1,1,2,2,4}
255: {2,3,7}
259: {4,12}
264: {1,1,1,2,5}
Removing the factor 2 gives
A000961.
Partitions of this type are counted by
A363132.
A051293 counts subsets with integer mean.
A360005 gives twice median of prime indices.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Mean[prix[#]]==2*Min[prix[#]]&]
A363223
Numbers with bigomega equal to median prime index.
Original entry on oeis.org
2, 9, 10, 50, 70, 75, 105, 110, 125, 130, 165, 170, 175, 190, 195, 230, 255, 275, 285, 290, 310, 325, 345, 370, 410, 425, 430, 435, 465, 470, 475, 530, 555, 575, 590, 610, 615, 645, 670, 686, 705, 710, 725, 730, 775, 790, 795, 830, 885, 890, 915, 925, 970
Offset: 1
The terms together with their prime indices begin:
2: {1}
9: {2,2}
10: {1,3}
50: {1,3,3}
70: {1,3,4}
75: {2,3,3}
105: {2,3,4}
110: {1,3,5}
125: {3,3,3}
130: {1,3,6}
165: {2,3,5}
170: {1,3,7}
175: {3,3,4}
Partitions of this type are counted by
A361800.
A000975 counts subsets with integer median.
A359908 lists numbers whose prime indices have integer median.
A360005 gives twice median of prime indices.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],PrimeOmega[#]==Median[prix[#]]&]
Comments