A371450
MM-number of the set-system with BII-number n.
Original entry on oeis.org
1, 3, 5, 15, 13, 39, 65, 195, 11, 33, 55, 165, 143, 429, 715, 2145, 29, 87, 145, 435, 377, 1131, 1885, 5655, 319, 957, 1595, 4785, 4147, 12441, 20735, 62205, 47, 141, 235, 705, 611, 1833, 3055, 9165, 517, 1551, 2585, 7755, 6721, 20163, 33605, 100815, 1363, 4089
Offset: 0
The set-system with BII-number 30 is {{2},{1,2},{3},{1,3}} with MM-number prime(3) * prime(6) * prime(5) * prime(10) = 20735.
The terms together with their prime indices and binary indices of prime indices begin:
1 -> {} -> {}
3 -> {2} -> {{1}}
5 -> {3} -> {{2}}
15 -> {2,3} -> {{1},{2}}
13 -> {6} -> {{1,2}}
39 -> {2,6} -> {{1},{1,2}}
65 -> {3,6} -> {{2},{1,2}}
195 -> {2,3,6} -> {{1},{2},{1,2}}
11 -> {5} -> {{3}}
33 -> {2,5} -> {{1},{3}}
55 -> {3,5} -> {{2},{3}}
165 -> {2,3,5} -> {{1},{2},{3}}
143 -> {5,6} -> {{1,2},{3}}
429 -> {2,5,6} -> {{1},{1,2},{3}}
715 -> {3,5,6} -> {{2},{1,2},{3}}
2145 -> {2,3,5,6} -> {{1},{2},{1,2},{3}}
A019565 gives Heinz number of binary indices.
A070939 gives length of binary expansion.
Cf.
A000720,
A003963,
A087086,
A096111,
A275024,
A302242,
A302505,
A302521,
A326782,
A329557,
A329630,
A368109.
-
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Table[Times@@Prime/@(Times@@Prime/@#&/@bix/@bix[n]),{n,0,30}]
A371454
Numbers whose binary indices are all semiprimes.
Original entry on oeis.org
8, 32, 40, 256, 264, 288, 296, 512, 520, 544, 552, 768, 776, 800, 808, 8192, 8200, 8224, 8232, 8448, 8456, 8480, 8488, 8704, 8712, 8736, 8744, 8960, 8968, 8992, 9000, 16384, 16392, 16416, 16424, 16640, 16648, 16672, 16680, 16896, 16904, 16928, 16936, 17152
Offset: 1
The terms together with their binary expansions and binary indices begin:
8: 1000 ~ {4}
32: 100000 ~ {6}
40: 101000 ~ {4,6}
256: 100000000 ~ {9}
264: 100001000 ~ {4,9}
288: 100100000 ~ {6,9}
296: 100101000 ~ {4,6,9}
512: 1000000000 ~ {10}
520: 1000001000 ~ {4,10}
544: 1000100000 ~ {6,10}
552: 1000101000 ~ {4,6,10}
768: 1100000000 ~ {9,10}
776: 1100001000 ~ {4,9,10}
800: 1100100000 ~ {6,9,10}
808: 1100101000 ~ {4,6,9,10}
Partitions of this type are counted by
A101048, squarefree case
A002100.
For primes instead of semiprimes we get
A326782.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
-
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
semi[n_]:=PrimeOmega[n]==2;
Select[Range[10000],And@@semi/@bix[#]&]
-
from math import isqrt
from sympy import primepi, primerange
def A371454(n):
def f(x,n): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
def A001358(n):
m, k = n, f(n,n)
while m != k:
m, k = k, f(k,n)
return m
return sum(1<<A001358(i)-1 for i, j in enumerate(bin(n)[:1:-1],1) if j=='1') # Chai Wah Wu, Aug 16 2024
A368531
Numbers whose binary indices are all powers of 3, where a binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion.
Original entry on oeis.org
0, 1, 4, 5, 256, 257, 260, 261, 67108864, 67108865, 67108868, 67108869, 67109120, 67109121, 67109124, 67109125, 1208925819614629174706176, 1208925819614629174706177, 1208925819614629174706180, 1208925819614629174706181, 1208925819614629174706432
Offset: 1
The terms together with their binary expansions and binary indices begin:
0: 0 ~ {}
1: 1 ~ {1}
4: 100 ~ {3}
5: 101 ~ {1,3}
256: 100000000 ~ {9}
257: 100000001 ~ {1,9}
260: 100000100 ~ {3,9}
261: 100000101 ~ {1,3,9}
67108864: 100000000000000000000000000 ~ {27}
67108865: 100000000000000000000000001 ~ {1,27}
67108868: 100000000000000000000000100 ~ {3,27}
67108869: 100000000000000000000000101 ~ {1,3,27}
67109120: 100000000000000000100000000 ~ {9,27}
67109121: 100000000000000000100000001 ~ {1,9,27}
67109124: 100000000000000000100000100 ~ {3,9,27}
67109125: 100000000000000000100000101 ~ {1,3,9,27}
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
-
Select[Range[0,10000],IntegerQ[Log[3,Times@@Join@@Position[Reverse[IntegerDigits[#,2]],1]]]&]
(* Second program *)
{0}~Join~Array[FromDigits[Reverse@ ReplacePart[ConstantArray[0, Max[#]], Map[# -> 1 &, #]], 2] &[3^(Position[Reverse@ IntegerDigits[#, 2], 1][[;; , 1]] - 1)] &, 255] (* Michael De Vlieger, Dec 29 2023 *)
A370818
Number of sets of nonempty subsets of {1..n} with only one possible way to choose a set of different vertices of each edge.
Original entry on oeis.org
1, 2, 6, 45, 1352, 157647, 63380093, 85147722812, 385321270991130
Offset: 0
The set-system {{2},{1,2},{2,4},{1,3,4}} has unique choice (2,1,4,3) so is counted under a(4).
Factorizations of this type are counted by
A370645.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
-
Table[Length[Select[Subsets[Subsets[Range[n]]], Length[Union[Sort/@Select[Tuples[#],UnsameQ@@#&]]]==1&]],{n,0,3}]
A370819
Number of subsets of {1..n-1} whose cardinality is one less than the length of the binary expansion of n; a(0) = 0.
Original entry on oeis.org
0, 1, 1, 2, 3, 6, 10, 15, 35, 56, 84, 120, 165, 220, 286, 364, 1365, 1820, 2380, 3060, 3876, 4845, 5985, 7315, 8855, 10626, 12650, 14950, 17550, 20475, 23751, 27405, 169911, 201376, 237336, 278256, 324632, 376992, 435897, 501942, 575757, 658008, 749398, 850668
Offset: 0
The a(1) = 1 through a(7) = 15 subsets:
{} {1} {1} {1,2} {1,2} {1,2} {1,2}
{2} {1,3} {1,3} {1,3} {1,3}
{2,3} {1,4} {1,4} {1,4}
{2,3} {1,5} {1,5}
{2,4} {2,3} {1,6}
{3,4} {2,4} {2,3}
{2,5} {2,4}
{3,4} {2,5}
{3,5} {2,6}
{4,5} {3,4}
{3,5}
{3,6}
{4,5}
{4,6}
{5,6}
The version without subtracting one is
A357812.
A007318 counts subsets by cardinality.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
-
Table[If[n==0,0,Binomial[n-1,IntegerLength[n,2]-1]],{n,0,15}]
Comments