A371179
Positive integers with fewer distinct prime factors (A001221) than distinct divisors of prime indices (A370820).
Original entry on oeis.org
3, 5, 7, 9, 11, 13, 14, 15, 17, 19, 21, 23, 25, 26, 27, 28, 29, 31, 33, 35, 37, 38, 39, 41, 43, 45, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 98, 99, 101
Offset: 1
The terms together with their prime indices begin:
3: {2} 28: {1,1,4} 52: {1,1,6} 74: {1,12}
5: {3} 29: {10} 53: {16} 75: {2,3,3}
7: {4} 31: {11} 55: {3,5} 76: {1,1,8}
9: {2,2} 33: {2,5} 56: {1,1,1,4} 77: {4,5}
11: {5} 35: {3,4} 57: {2,8} 78: {1,2,6}
13: {6} 37: {12} 58: {1,10} 79: {22}
14: {1,4} 38: {1,8} 59: {17} 81: {2,2,2,2}
15: {2,3} 39: {2,6} 61: {18} 83: {23}
17: {7} 41: {13} 63: {2,2,4} 85: {3,7}
19: {8} 43: {14} 65: {3,6} 86: {1,14}
21: {2,4} 45: {2,2,3} 67: {19} 87: {2,10}
23: {9} 46: {1,9} 69: {2,9} 89: {24}
25: {3,3} 47: {15} 70: {1,3,4} 91: {4,6}
26: {1,6} 49: {4,4} 71: {20} 92: {1,1,9}
27: {2,2,2} 51: {2,7} 73: {21} 93: {2,11}
Counting all prime indices on the LHS gives
A371168, counted by
A371173.
A008284 counts partitions by length.
A305148 counts pairwise indivisible (stable) partitions, ranks
A316476.
A371180
Number of strict integer partitions of n with fewer parts than distinct divisors of parts.
Original entry on oeis.org
0, 0, 1, 1, 1, 3, 2, 4, 4, 7, 8, 10, 12, 15, 19, 22, 29, 33, 40, 47, 57, 68, 81, 95, 110, 129, 152, 178, 207, 240, 277, 317, 365, 422, 486, 558, 632, 723, 824, 940, 1067, 1210, 1371, 1544, 1751, 1977, 2233, 2508, 2820, 3162, 3555, 3983, 4465, 4990, 5571, 6224
Offset: 0
The strict partition (6,4,2,1) has 4 parts and 5 distinct divisors of parts {1,2,3,4,5}, so is counted under a(13).
The a(2) = 1 through a(11) = 10 partitions:
(2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
(3,2) (4,2) (4,3) (5,3) (5,4) (6,4) (6,5)
(4,1) (5,2) (6,2) (6,3) (7,3) (7,4)
(6,1) (4,3,1) (7,2) (8,2) (8,3)
(8,1) (9,1) (9,2)
(4,3,2) (5,3,2) (10,1)
(6,2,1) (5,4,1) (5,4,2)
(6,3,1) (6,3,2)
(6,4,1)
(8,2,1)
The version for equality is
A371128.
A008284 counts partitions by length.
Cf.
A003963,
A239312,
A319055,
A355529,
A370803,
A370808,
A370813,
A371130 (
A370802),
A371171,
A371172 (
A371165),
A371173 (
A371168).
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[Union[#]] < Length[Union@@Divisors/@#]&]],{n,0,30}]
Comments