A375397
Numbers divisible by the square of some prime factor other than the least. Non-hooklike numbers.
Original entry on oeis.org
18, 36, 50, 54, 72, 75, 90, 98, 100, 108, 126, 144, 147, 150, 162, 180, 196, 198, 200, 216, 225, 234, 242, 245, 250, 252, 270, 288, 294, 300, 306, 324, 338, 342, 350, 360, 363, 375, 378, 392, 396, 400, 414, 432, 441, 450, 468, 484, 486, 490, 500, 504, 507, 522
Offset: 1
The prime factors of 300 are {2,2,3,5,5}, with maximal anti-runs ((2),(2,3,5),(5)), with minima (2,2,5), so 300 is in the sequence.
The terms together with their prime indices begin:
18: {1,2,2}
36: {1,1,2,2}
50: {1,3,3}
54: {1,2,2,2}
72: {1,1,1,2,2}
75: {2,3,3}
90: {1,2,2,3}
98: {1,4,4}
100: {1,1,3,3}
108: {1,1,2,2,2}
126: {1,2,2,4}
144: {1,1,1,1,2,2}
For distinct instead of identical minima we have
A375399, counts
A375404.
Partitions of this type are counted by
A375405.
Cf.
A000005,
A013661,
A046660,
A272919,
A319066,
A358905,
A374686,
A374704,
A374742,
A375133,
A375136,
A375401.
-
Select[Range[100],!SameQ@@Min /@ Split[Flatten[ConstantArray@@@FactorInteger[#]],UnsameQ]&]
-
is(k) = if(k > 1, my(e = factor(k)[, 2]); vecprod(e) > e[1], 0); \\ Amiram Eldar, Oct 26 2024
A375139
Numbers k such that the leaders of strictly increasing runs in the k-th composition in standard order are not weakly decreasing.
Original entry on oeis.org
26, 50, 53, 58, 90, 98, 100, 101, 106, 107, 114, 117, 122, 154, 164, 178, 181, 186, 194, 196, 197, 201, 202, 203, 210, 212, 213, 214, 215, 218, 226, 228, 229, 234, 235, 242, 245, 250, 282, 306, 309, 314, 324, 329, 346, 354, 356, 357, 362, 363, 370, 373, 378
Offset: 1
The terms together with corresponding compositions begin:
26: (1,2,2)
50: (1,3,2)
53: (1,2,2,1)
58: (1,1,2,2)
90: (2,1,2,2)
98: (1,4,2)
100: (1,3,3)
101: (1,3,2,1)
106: (1,2,2,2)
107: (1,2,2,1,1)
114: (1,1,3,2)
117: (1,1,2,2,1)
122: (1,1,1,2,2)
154: (3,1,2,2)
164: (2,3,3)
178: (2,1,3,2)
181: (2,1,2,2,1)
186: (2,1,1,2,2)
For leaders of identical runs we have
A335485.
Ranked by positions of non-weakly decreasing rows in
A374683.
The complement is counted by
A374697.
Compositions of this type are counted by
A375135.
A374700 counts compositions by sum of leaders of strictly increasing runs.
All of the following pertain to compositions in standard order:
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],!GreaterEqual@@First/@Split[stc[#],Less]&]
Comments