cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A376600 Inflection or undulation points in the sequence of non-prime-powers inclusive (A024619).

Original entry on oeis.org

2, 7, 9, 10, 11, 14, 15, 18, 20, 22, 24, 26, 29, 30, 31, 33, 39, 41, 43, 44, 45, 47, 48, 50, 51, 52, 55, 56, 57, 58, 59, 62, 64, 66, 68, 70, 73, 74, 75, 76, 77, 80, 86, 87, 88, 90, 92, 93, 94, 95, 96, 97, 98, 100, 102, 103, 104, 107, 108, 109, 112, 114, 116
Offset: 1

Views

Author

Gus Wiseman, Oct 05 2024

Keywords

Comments

These are points at which the second differences (A376599) are zero.
Inclusive means 1 is a prime-power but not a non-prime-power. For the exclusive version, add 1 to all terms.

Examples

			The non-prime-powers inclusive are (A024619):
  6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, ...
with first differences (A375735):
  4, 2, 2, 1, 3, 2, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, ...
with first differences (A376599):
  -2, 0, -1, 2, -1, -1, 0, 1, 0, 0, 0, 1, -2, 0, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, ...
with zeros at (A376600):
  2, 7, 9, 10, 11, 14, 15, 18, 20, 22, 24, 26, 29, 30, 31, 33, 39, 41, 43, 44, ...
		

Crossrefs

For first differences we had A375735, ones A375713(n)-1.
These are the zeros of A376599.
The complement is A376601.
A000961 lists prime-powers inclusive, exclusive A246655.
A001597 lists perfect-powers, complement A007916.
A024619/A361102 list non-prime-powers inclusive.
A321346/A321378 count integer partitions into non-prime-powers, factorizations A322452.
For non-prime-powers: A375735/A375708 (first differences), A376599 (second differences), A376601 (nonzero curvature).
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376596 (prime-power).

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100], !(#==1||PrimePowerQ[#])&],2],0]

A376601 Points of nonzero curvature in the sequence of non-prime-powers inclusive (A024619).

Original entry on oeis.org

1, 3, 4, 5, 6, 8, 12, 13, 16, 17, 19, 21, 23, 25, 27, 28, 32, 34, 35, 36, 37, 38, 40, 42, 46, 49, 53, 54, 60, 61, 63, 65, 67, 69, 71, 72, 78, 79, 81, 82, 83, 84, 85, 89, 91, 99, 101, 105, 106, 110, 111, 113, 115, 117, 118, 122, 124, 132, 134, 136, 138, 148
Offset: 1

Views

Author

Gus Wiseman, Oct 05 2024

Keywords

Comments

These are points at which the second differences (A376599) are nonzero.
Inclusive means 1 is a prime-power but not a non-prime-power. For the exclusive version, subtract 1 and shift left.

Examples

			The non-prime-powers inclusive (A024619) are:
  6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, ...
with first differences (A375735):
  4, 2, 2, 1, 3, 2, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, ...
with first differences (A376599):
  -2, 0, -1, 2, -1, -1, 0, 1, 0, 0, 0, 1, -2, 0, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, ...
with nonzero terms (A376601) at:
  1, 3, 4, 5, 6, 8, 12, 13, 16, 17, 19, 21, 23, 25, 27, 28, 32, 34, 35, 36, 37, ...
		

Crossrefs

For first differences we had A375735, ones A375713(n) - 1.
These are the nonzeros of A376599.
The complement is A376600.
A000961 lists prime-powers inclusive, exclusive A246655.
A007916 lists non-perfect-powers.
A024619/A361102 list non-prime-powers inclusive.
A057820 gives first differences of prime-powers inclusive.
A321346/A321378 count integer partitions into non-prime-powers, factorizations A322452.
For non-prime-powers: A375735/A375708 (first differences), A376599 (second differences), A376600 (inflections and undulations).
For nonzero curvature: A333214 (prime), A376603 (composite), A376588 (non-perfect-power), A376592 (squarefree), A376595 (nonsquarefree), A376598 (prime-power).

Programs

  • Mathematica
    Join@@Position[Sign[Differences[Select[Range[100], !(#==1||PrimePowerQ[#])&],2]],1|-1]

A375928 Positions of adjacent non-prime-powers (exclusive) differing by more than 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 10, 11, 12, 13, 14, 18, 21, 22, 25, 26, 29, 34, 35, 37, 39, 42, 43, 48, 49, 50, 55, 62, 65, 66, 69, 70, 73, 80, 83, 84, 86, 91, 92, 101, 102, 107, 112, 115, 116, 119, 124, 125, 134, 135, 138, 139, 150, 161, 164, 165, 168, 173, 174, 175, 182
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2024

Keywords

Examples

			The non-prime-powers (exclusive) are 1, 6, 10, 12, 14, 15, 18, 20, ... which increase by more than 1 after positions 1, 2, 3, 4, 6, 7, ...
		

Crossrefs

For prime-powers inclusive (A000961) we have A376163, differences A373672.
For nonprime numbers (A002808) we have A014689, differences A046933.
First differences are A110969.
The complement is A375713.
For non-perfect-powers we have A375714, complement A375740.
The complement for prime-powers (exclusive) is A375734, differences A373671.
The complement for nonprime numbers is A375926, differences A373403.
A000040 lists the prime numbers, differences A001223.
A000961 lists prime-powers (inclusive), differences A057820.
A007916 lists non-perfect-powers, differences A375706.
A024619 lists non-prime-powers (inclusive), differences A375735.
A246655 lists prime-powers (exclusive), differences A174965.
A361102 lists non-prime-powers (exclusive), differences A375708.

Programs

  • Mathematica
    ce=Select[Range[100],!PrimePowerQ[#]&];
    Select[Range[Length[ce]-1],!ce[[#+1]]==ce[[#]]+1&]

Formula

The inclusive version is a(n+1) - 1.

A376163 Positions of adjacent non-prime-powers (inclusive, so 1 is a prime-power) differing by 1.

Original entry on oeis.org

4, 7, 8, 14, 15, 16, 18, 19, 22, 23, 26, 27, 29, 30, 31, 32, 35, 37, 39, 40, 43, 44, 45, 46, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 62, 63, 66, 67, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 84, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105
Offset: 1

Views

Author

Gus Wiseman, Sep 13 2024

Keywords

Examples

			The non-prime-powers (inclusive) are 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, ... which increase by 1 after positions 4, 7, 8, ...
		

Crossrefs

For prime-powers inclusive (A000961) we have A375734, differences A373671.
For nonprime numbers (A002808) we have A375926, differences A373403.
For prime-powers exclusive (A246655) we have A375734(n+1) + 1.
First differences are A373672.
The exclusive version is a(n) - 1 = A375713.
Positions of 1's in A375735.
For non-perfect-powers we have A375740.
Prime-powers inclusive:
- terms: A000961
- differences: A057820
Non-prime-powers inclusive:
- terms: A361102
- differences: A375708
A000040 lists all of the primes, differences A001223.
A007916 lists non-perfect-powers, differences A375706.

Programs

  • Mathematica
    ce=Select[Range[2,100],!PrimePowerQ[#]&];
    Select[Range[Length[ce]-1],ce[[#+1]]==ce[[#]]+1&]
Previous Showing 11-14 of 14 results.