cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A375186 Number of subsets of {1,2,...,n} such that no two elements differ by 1, 2, 4, or 5.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 14, 19, 25, 35, 48, 64, 88, 120, 161, 220, 300, 405, 552, 752, 1018, 1385, 1885, 2556, 3475, 4727, 6416, 8720, 11857, 16102, 21881, 29745, 40406, 54905, 74626, 101389, 137769, 187235, 254404, 345689, 469781, 638339
Offset: 0

Views

Author

Michael A. Allen, Aug 02 2024

Keywords

Comments

a(n-4) for n>3 is the number of equivalence classes of binary words of length n for the subword 100110 (see A317669 for further explanation).
a(n) is the number of compositions of n+5 into parts 1, 6, 9, 12, 15, 18, ...

Examples

			For n = 6, the 10 subsets are {}, {1}, {2}, {3}, {4}, {1,4}, {5}, {2,5}, {6}, {3,6}.
		

Crossrefs

Column k=27 of A376033.

Programs

  • Mathematica
    CoefficientList[Series[(1 + x + x^2 + x^4 + x^5)/(1 - x - x^3 + x^4 - x^6),{x,0,42}],x]
    LinearRecurrence[{1, 0, 1, -1, 0, 1}, {1, 2, 3, 4, 6, 8}, 42]

Formula

a(n) = a(n-1) + a(n-3) - a(n-4) + a(n-6) for n>= 6.
G.f.: (1 + x + x^2 + x^4 + x^5)/(1 - x - x^3 + x^4 - x^6).

A375979 Number of subsets of {1,2,...,n} such that no two elements differ by 4 or 5.

Original entry on oeis.org

1, 2, 4, 8, 16, 24, 32, 42, 55, 76, 118, 192, 314, 504, 767, 1120, 1612, 2324, 3412, 5148, 7900, 12169, 18631, 28152, 42024, 62364, 92576, 138141, 207629, 313718, 474796, 717456, 1080320, 1620994, 2427447, 3634800, 5450293, 8188936, 12323172, 18555880, 27930853
Offset: 0

Views

Author

Michael A. Allen, Sep 20 2024

Keywords

Examples

			For n = 6, the 32 subsets are {}, {1}, {2}, {1,2}, {3}, {1,3}, {2,3}, {1,2,3}, {4}, {1,4}, {2,4}, {1,2,4}, {3,4}, {1,3,4}, {2,3,4}, {1,2,3,4}, {5}, {2,5}, {3,5}, {2,3,5}, {4,5}, {2,4,5}, {3,4,5}, {2,3,4,5}, {6}, {3,6}, {4,6}, {3,4,6}, {5,6}, {3,5,6}, {4,5,6}, {3,4,5,6}.
		

Crossrefs

Column k=24 of A376033.

Programs

  • Mathematica
    CoefficientList[Series[(1 + x + 2*x^2 + 3*x^3 + 7*x^4 + 6*x^5 + 3*x^6 - x^7 - 3*x^8 - 6*x^9 - 5*x^10 - 3*x^11)/(1 - x - x^3 + x^4 - x^6 - x^7 - 2*x^8 - 3*x^9 + x^10 + 2*x^11 + 3*x^12),{x,0,38}],x]
    LinearRecurrence[{1, 0, 1, -1, 0, 1, 1, 2, 3, -1, -2, -3}, {1, 2, 4, 8, 16, 24, 32, 42, 55, 76, 118, 192}, 39]

Formula

a(n) = a(n-1) + a(n-3) - a(n-4) + a(n-6) + a(n-7) + 2*a(n-8) + 3*a(n-9) - a(n-10) - 2*a(n-11) - 3*a(n-12) for n >= 12.
G.f.: (1 + x + 2*x^2 + 3*x^3 + 7*x^4 + 6*x^5 + 3*x^6 - x^7 - 3*x^8 - 6*x^9 - 5*x^10 - 3*x^11)/(1 - x - x^3 + x^4 - x^6 - x^7 - 2*x^8 - 3*x^9 + x^10 + 2*x^11 + 3*x^12).

A375984 Number of subsets of {1,2,...,n} such that no two elements differ by 3, 4, or 5.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 20, 25, 33, 49, 77, 121, 181, 258, 356, 488, 680, 976, 1432, 2113, 3089, 4449, 6329, 8961, 12729, 18226, 26292, 38056, 55012, 79200, 113548, 162425, 232401, 333201, 478853, 689177, 991949, 1426322, 2048244, 2938696, 4215552, 6049984, 8688816
Offset: 0

Views

Author

Michael A. Allen, Sep 21 2024

Keywords

Examples

			For n = 6, the 20 subsets are {}, {1}, {2}, {1,2}, {3}, {1,3}, {2,3}, {1,2,3}, {4}, {2,4}, {3,4}, {2,3,4}, {5}, {3,5}, {4,5}, {3,4,5}, {6}, {4,6}, {5,6}, {4,5,6}.
		

Crossrefs

Column k=28 of A376033.

Programs

  • Mathematica
    CoefficientList[Series[(1 + x + 2*x^2 + 4*x^3 + 4*x^4 + 4*x^5 + 3*x^6 + 2*x^7)/(1 - x - x^6 - x^7 - 2*x^8),{x,0,40}],x]
    LinearRecurrence[{1, 0, 0, 0, 0, 1, 1, 2}, {1, 2, 4, 8, 12, 16, 20, 25}, 41]

Formula

a(n) = a(n-1) + a(n-6) + a(n-7) + 2*a(n-8) for n >= 8.
G.f.: (1 + x + 2*x^2 + 4*x^3 + 4*x^4 + 4*x^5 + 3*x^6 + 2*x^7)/((1 + x)(1 + x^2)(1 - 2*x + x^2 + x^4 - 2*x^5)).

A375985 Number of subsets of {1,2,...,n} such that no two elements differ by 1, 3, 4, or 5.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 14, 18, 25, 35, 49, 67, 90, 119, 158, 211, 285, 387, 526, 712, 960, 1290, 1733, 2331, 3142, 4241, 5727, 7729, 10422, 14043, 18918, 25490, 34359, 46329, 62478, 84250, 113590, 153123, 206400, 278219, 375056, 505635, 681703, 919076, 1239066
Offset: 0

Views

Author

Michael A. Allen, Sep 21 2024

Keywords

Comments

a(n) is the number of compositions of n+5 into parts 1, 6, and 8.

Examples

			For n = 6, the 11 subsets are {}, {1}, {2}, {3}, {1,3}, {4}, {2,4}, {5}, {3,5}, {6}, {4,6}.
		

Crossrefs

Column k=29 of A376033.

Programs

  • Mathematica
    CoefficientList[Series[(1 + x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + x^6 + x^7)/(1 - x - x^6 - x^8),{x,0,43}],x]
    LinearRecurrence[{1, 0, 0, 0, 0, 1, 0, 1}, {1, 2, 3, 5, 7, 9, 11, 14}, 44]

Formula

a(n) = a(n-1) + a(n-6) + a(n-8) for n >= 8.
G.f.: (1 + x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + x^6 + x^7)/((1 + x)(1 - 2*x + 2*x^2 - 2*x^3 + 2*x^4 - 2*x^5 + x^6 - x^7)).

A385870 Number of subsets of {1,2,...,n} such that no two elements differ by 1 or 6.

Original entry on oeis.org

1, 2, 3, 5, 8, 13, 21, 29, 45, 66, 99, 148, 218, 337, 497, 755, 1131, 1699, 2571, 3824, 5794, 8661, 13041, 19601, 29376, 44311, 66349, 99936, 150000, 225387, 339000, 508631, 765392, 1148865, 1727249, 2595270, 3898324, 5861084, 8801690, 13231745, 19877092, 29869125
Offset: 0

Views

Author

Michael A. Allen, Jul 11 2025

Keywords

Comments

a(n) is the number of permutations of 0..n with each element moved by -1 to 1 places and every 6 consecutive elements having their maximum within 6 of their minimum.

Examples

			For n = 7, the 29 subsets are {}, {1}, {2}, {3}, {1,3}, {4}, {1,4}, {2,4}, {5}, {1,5}, {2,5}, {3,5}, {1,3,5}, {6}, {1,6}, {2,6}, {3,6}, {1,3,6}, {4,6}, {1,4,6}, {2,4,6}, {7}, {2,7}, {3,7}, {4,7}, {2,4,7}, {5,7}, {2,5,7}, {3,5,7}.
		

Crossrefs

Column k=33 of A376033.

Programs

  • Mathematica
    CoefficientList[Series[(1 + x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 5*x^6 + 3*x^8 + 2*x^9 - x^10 + x^11 - 4*x^12 - x^13 - 2*x^14 - 2*x^15 - x^17)/(1 - x - x^4 - x^5 + 2*x^6 - 4*x^7 + 2*x^8 - 2*x^10 + 2*x^11 - 4*x^12 + 3*x^13 - x^14 + 2*x^16 - x^17 + x^18),{x,0,41}],x]
    LinearRecurrence[{1,0,0,1,1,-2,4,-2,0,2,-2,4,-3,1,0,-2,1,-1},{1,2,3,5,8,13,21,29,45,66,99,148,218,337,497,755,1131,1699}, 42]

Formula

G.f.: (1 + x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 5*x^6 + 3*x^8 + 2*x^9 - x^10 + x^11 - 4*x^12 - x^13 - 2*x^14 - 2*x^15 - x^17)/(1 - x - x^4 - x^5 + 2*x^6 - 4*x^7 + 2*x^8 - 2*x^10 + 2*x^11 - 4*x^12 + 3*x^13 - x^14 + 2*x^16 - x^17 + x^18).
a(n) = a(n-1) + a(n-4) + a(n-5) - 2*a(n-6) + 4*a(n-7) - 2*a(n-8) + 2*a(n-10) - 2*a(n-11) + 4*a(n-12) - 3*a(n-13) + a(n-14) - 2*a(n-16) + a(n-17) - a(n-18) for n >= 18.
Previous Showing 11-15 of 15 results.