cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A378618 Sum of nonsquarefree numbers between prime(n) and prime(n+1).

Original entry on oeis.org

0, 4, 0, 17, 12, 16, 18, 20, 104, 0, 68, 40, 0, 89, 199, 110, 60, 127, 68, 72, 151, 161, 172, 278, 297, 0, 104, 108, 112, 849, 128, 403, 0, 579, 150, 461, 322, 164, 680, 351, 180, 561, 192, 196, 198, 819, 648, 449, 228, 232, 470, 240, 1472, 508, 521, 532, 270
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2024

Keywords

Examples

			The nonsquarefree numbers between prime(24) = 89 and prime(25) = 97 are {90, 92, 96}, so a(24) = 278.
		

Crossrefs

For prime instead of nonsquarefree we have A001043.
For composite instead of nonsquarefree we have A054265.
Zeros are A068361.
A000040 lists the primes, differences A001223, seconds A036263.
A070321 gives the greatest squarefree number up to n.
A071403 counts squarefree numbers up to prime(n), restriction of A013928.
A120327 gives the least nonsquarefree number >= n.
A378086 counts nonsquarefree numbers up to prime(n), restriction of A057627.
For squarefree numbers (A005117, differences A076259) between primes:
- length is A061398, zeros A068360
- min is A112926, differences A378037
- max is A112925, differences A378038
- sum is A373197
For nonsquarefree numbers (A013929, differences A078147) between primes:
- length is A061399
- min is A377783 (differences A377784), union A378040
- max is A378032 (differences A378034), restriction of A378033 (differences A378036)
- sum is A378618 (this)

Programs

  • Mathematica
    Table[Total[Select[Range[Prime[n],Prime[n+1]],!SquareFreeQ[#]&]],{n,100}]

A378617 First differences of A378249 (next perfect power after prime(n)).

Original entry on oeis.org

0, 4, 0, 8, 0, 9, 0, 0, 7, 0, 17, 0, 0, 0, 15, 0, 0, 17, 0, 0, 0, 19, 0, 0, 21, 0, 0, 0, 0, 7, 16, 0, 0, 25, 0, 0, 0, 0, 27, 0, 0, 0, 0, 20, 0, 0, 9, 18, 0, 0, 0, 0, 13, 33, 0, 0, 0, 0, 0, 0, 35, 0, 0, 0, 0, 19, 0, 18, 0, 0, 0, 39, 0, 0, 0, 0, 0, 41, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2024

Keywords

Comments

This is the next perfect power after prime(n+1), minus the next perfect power after prime(n).
Perfect powers (A001597) are 1 and numbers with a proper integer root, complement A007916.

Crossrefs

Positions of positives are A377283.
Positions of zeros are A377436.
The restriction to primes has first differences A377468.
A version for nonsquarefree numbers is A377784, differences of A377783.
The opposite is differences of A378035 (restriction of A081676).
First differences of A378249, run-lengths A378251.
Without zeros we have differences of A378250.
A000040 lists the primes, differences A001223.
A001597 lists the perfect powers, differences A053289.
A007916 lists the non perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A377432 counts perfect powers between primes.
A378356 - 1 gives next prime after perfect powers, union A378365 - 1.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Table[NestWhile[#+1&,Prime[n],Not@*perpowQ],{n,100}]//Differences
Previous Showing 21-22 of 22 results.