cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A377782 First-differences of A031218(n) = greatest number <= n that is 1 or a prime-power.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 1, 0, 2, 0, 2, 0, 0, 3, 1, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 2, 0, 2, 1, 0, 0, 0, 0, 5, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 6, 0, 2, 0, 0, 3, 0, 0, 3, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 0, 6, 0, 2, 0, 2, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2024

Keywords

Comments

Note 1 is a power of a prime (A000961) but not a prime-power (A246655).

Crossrefs

Positions of 1 are A006549.
Positions of 0 are A080765 = A024619 - 1, complement A181062 = A000961 - 1.
Positions of 2 are A120432 (except initial terms).
Sorted positions of first appearances appear to include A167236 - 1.
Positions of terms > 1 are A373677.
The restriction to primes minus 1 is A377289.
Below, A (B) indicates that A is the first-differences of B:
- This sequence is A377782 (A031218), which has restriction to primes A065514 (A377781).
- The opposite is A377780 (A000015), restriction A377703 (A345531).
- For nonsquarefree we have A378036 (A378033), opposite A378039 (A120327).
- For squarefree we have A378085 (A112925), restriction A378038 (A070321).
A000040 lists the primes, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A024619 lists the non-prime-powers, differences A375735, seconds A376599.
A361102 lists the non-powers of primes, differences A375708.
A378034 gives differences of A378032 (restriction of A378033).
Prime-powers between primes: A053607, A080101, A366833, A377057, A377286, A377287.

Programs

  • Mathematica
    Differences[Table[NestWhile[#-1&,n,#>1&&!PrimePowerQ[#]&],{n,100}]]

A378618 Sum of nonsquarefree numbers between prime(n) and prime(n+1).

Original entry on oeis.org

0, 4, 0, 17, 12, 16, 18, 20, 104, 0, 68, 40, 0, 89, 199, 110, 60, 127, 68, 72, 151, 161, 172, 278, 297, 0, 104, 108, 112, 849, 128, 403, 0, 579, 150, 461, 322, 164, 680, 351, 180, 561, 192, 196, 198, 819, 648, 449, 228, 232, 470, 240, 1472, 508, 521, 532, 270
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2024

Keywords

Examples

			The nonsquarefree numbers between prime(24) = 89 and prime(25) = 97 are {90, 92, 96}, so a(24) = 278.
		

Crossrefs

For prime instead of nonsquarefree we have A001043.
For composite instead of nonsquarefree we have A054265.
Zeros are A068361.
A000040 lists the primes, differences A001223, seconds A036263.
A070321 gives the greatest squarefree number up to n.
A071403 counts squarefree numbers up to prime(n), restriction of A013928.
A120327 gives the least nonsquarefree number >= n.
A378086 counts nonsquarefree numbers up to prime(n), restriction of A057627.
For squarefree numbers (A005117, differences A076259) between primes:
- length is A061398, zeros A068360
- min is A112926, differences A378037
- max is A112925, differences A378038
- sum is A373197
For nonsquarefree numbers (A013929, differences A078147) between primes:
- length is A061399
- min is A377783 (differences A377784), union A378040
- max is A378032 (differences A378034), restriction of A378033 (differences A378036)
- sum is A378618 (this)

Programs

  • Mathematica
    Table[Total[Select[Range[Prime[n],Prime[n+1]],!SquareFreeQ[#]&]],{n,100}]
Previous Showing 21-22 of 22 results.