cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A381071 Numbers k such that the sum of the proper divisors of k that have the same binary weight as k is larger than k, and no subset of these divisors sums to k.

Original entry on oeis.org

1050, 3150, 4284, 4410, 5148, 6292, 6790, 7176, 8890, 10764, 17850, 18648, 19000, 19530, 32886, 33072, 33150, 35088, 35530, 35720, 35770, 38850, 41360, 43164, 45084, 49368, 49764, 50456, 50730, 52884, 54280, 54340, 58410, 58696, 59010, 59408, 63492, 66010, 68376
Offset: 1

Views

Author

Amiram Eldar, Feb 13 2025

Keywords

Comments

Analogous to weird numbers (A006037), as A380846 is analogous to perfect numbers (A000396).

Crossrefs

Subsequence of A380929.
A381072 is a subsequence.

Programs

  • Mathematica
    divs[n_] := Module[{hw = DigitCount[n, 2, 1]}, Select[Divisors[n], DigitCount[#, 2, 1] == hw &]];
    weirdQ[n_, d_, s1_, m1_] :=  weirdQ[n, d, s1, m1] = Module[{s = s1, m = m1}, If[m == 0, False, While[m > 0 && d[[m]] > n, s -= d[[m]]; m--]; If[m == 0, True, d[[m]] < n && If[s > n, weirdQ[n - d[[m]], d, s - d[[m]], m - 1] && weirdQ[n, d, s - d[[m]], m - 1], s < n && m < Length[d] - 1]]]];
    q[n_] := Module[{d = divs[n], s, m}, s = Total[d] - n; m = Length[d] - 1; weirdQ[n, d, s, m]]; Select[Range[70000], q] (* based on a Pari code by M. F. Hasler at A006037 *)
  • PARI
    divs(n) = {my(h = hammingweight(n)); select(x -> hammingweight(x)==h, divisors(n));}
    is(n, d = divs(n), s = vecsum(d)-n, m = #d-1) = {if(m == 0, return(0)); while(m > 0 && d[m] > n, s -= d[m]; m--); if(m==0, return(1)); (d[m] < n &&
    if(s > n, is(n-d[m], d, s-d[m], m-1) && is(n, d, s-d[m], m-1), s < n && m < #d-1));} \\ based on a code by M. F. Hasler at A006037

A383366 Smallest of a sociable triple i < j < k such that j = s(i), k = s(j), and i = s(k), where s(k) = A380845(k) - k is the sum of aliquot divisors of k that have the same binary weight as k.

Original entry on oeis.org

4400700, 12963816, 29878920, 38353800, 44973480, 51894304, 52208520, 67849656, 73134432, 81685080, 100711656, 103759848, 105096096, 113044896, 113161320, 114608032, 128639034, 135465912, 135559080, 136786200, 139242740, 148758120, 156686088, 159628350, 171090416
Offset: 1

Views

Author

Amiram Eldar, Apr 24 2025

Keywords

Examples

			4400700 is a term since s(4400700) = 4840770, s(4840770) = 5456868, and s(5456868) = 4400700.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{h = DigitCount[n, 2, 1]}, DivisorSum[n, # &, # < n && DigitCount[#, 2, 1] == h &]]; q[k_] := Module[{k1 = f[k], k2}, If[k1 <= k, False, k2 = f[k1]; k2 > k && f[k2] == k]]; Select[Range[13000000], q]
  • PARI
    f(n) = {my(h = hammingweight(n)); sumdiv(n, d, d * (d < n && hammingweight(d) == h)); }
    isok(k) = {my(k1 = f(k), k2); if(k1 <= k, 0, k2 = f(k1); k2 > k && f(k2) == k);}
Previous Showing 11-12 of 12 results.