cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000003 Number of classes of primitive positive definite binary quadratic forms of discriminant D = -4n; or equivalently the class number of the quadratic order of discriminant D = -4n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 3, 4, 4, 2, 3, 4, 2, 6, 3, 2, 6, 4, 3, 4, 4, 4, 6, 4, 2, 6, 4, 4, 8, 4, 3, 6, 4, 4, 5, 4, 4, 6, 6, 4, 6, 6, 4, 8, 4, 2, 9, 4, 6, 8, 4, 4, 8, 8, 3, 8, 8, 4, 7, 4, 4, 10, 6, 6, 8, 4, 5, 8, 6, 4, 9, 8, 4, 10, 6, 4, 12, 8, 6, 6, 4, 8, 8, 8, 4, 8, 6, 4
Offset: 1

Views

Author

Keywords

Comments

From Joerg Arndt, Sep 02 2008: (Start)
It seems that 2*a(n) gives the degree of the minimal polynomial of (k_n)^2 where k_n is the n-th singular value, i.e., K(sqrt(1-k_n^2))/K(k_n)==sqrt(n) (and K is the elliptic integral of the first kind: K(x) := hypergeom([1/2,1/2],[1], x^2)).
Also, when setting K3(x)=hypergeom([1/3,2/3],[1], x^3) and solving for x such that K3((1-x^3)^(1/3))/K3(x)==sqrt(n), then the degree of the minimal polynomial of x^3 is every third term of this sequence, or so it seems. (End)
a(n) appears to be the degree of Klein's j-invariant j(sqrt(-n)) as an algebraic integer. - Li Han, Mar 02 2020

References

  • D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pages 20 and 231-234.[Dics means D = - Discriminant (see p. 223), and only squarefree cases appear on pp. 231-234, but not on p. 20. - Wolfdieter Lang, May 15 2021]
  • H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, p. 514.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A014599 for discriminant -(4n-1).
A006643 is a subsequence.

Programs

  • Magma
    O1 := MaximalOrder(QuadraticField(D)); _,f := IsSquare(D div Discriminant(O1)); ClassNumber(sub);
    
  • Mathematica
    a[1] = 1; a[n_] := (k0 = k /. FindRoot[EllipticK[1-k^2]/EllipticK[k^2] == Sqrt[n], {k, 1/2, 10^-10, 1}, WorkingPrecision -> 600, MaxIterations -> 100]; Exponent[ MinimalPolynomial[RootApproximant[k0^2, 24], x], x]/2); Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 1, 100}] (* Jean-François Alcover, Jul 21 2015, after Joerg Arndt *)
  • PARI
    {a(n) = qfbclassno(-4*n)}; /* Michael Somos, Jul 16 1999 */