Michael Somos has authored 2116 sequences. Here are the ten most recent ones:
A385121
a(n+1) = 12*a(n) - a(n-1), a(0) = a(1) = 2, a(n) = a(1-n).
Original entry on oeis.org
2, 2, 22, 262, 3122, 37202, 443302, 5282422, 62945762, 750066722, 8937854902, 106504192102, 1269112450322, 15122845211762, 180205030090822, 2147337515878102, 25587845160446402, 304906804409478722, 3633293807753298262, 43294618888630100422
Offset: 0
G.f. = 2 + 2*x + 22*x^2 + 262*x^3 + 3122*x^4 + 37202*x^5 + ...
-
a[ n_] := Which[n<1, a[1-n], n==1, 2, True, 12*a[n-1] - a[n-2]];
-
{a(n) = if(n<1, a(1-n), n==1, 2, 12*a(n-1) - a(n-2))};
A377310
Divisibility sequence associated with elliptic curve y^2 + y = x^3 - x^2 - 2x + 2 and point (1, 0).
Original entry on oeis.org
0, 1, 1, 1, -3, -4, -13, 23, 87, 415, -152, -8063, -38727, -142471, 2309453, 13609844, 187790979, -1743980081, -25547499185, -575984295329, 1873521429456, 217675476797921, 5045023692031697, 65853623974941521, -5934036772012185603, -157454833217800083092
Offset: 0
G.f. = x + x^2 + x^3 - 3*x^4 - 4*x^5 - 13*x^6 + 23*x^7 + 87*x^8 + 415*x^9 + ...
-
b:= proc(n) option remember; `if`(n<6, [0, 1$4, 2][n+1],
(b(n-1)*b(n-4) -b(n-2)*b(n-3)) / b(n-5))
end:
a:= n-> b(2*n):
seq(a(n), n=0..25); # Alois P. Heinz, May 05 2025
-
a[ n_] := a[n] = Which[ n<0, -a[-n], n<5, {0, 1, 1, 1, -3}[[n+1]], True, (a[n-1]*a[n-3] - a[n-2]^2)/a[n-4]];
-
{a(n) = my(v); if(n<0, -a(-n), n<5, [0, 1, 1, 1, -3][n+1], v = vector(n, i, if(i<5, a(i))); for(i=5, n, v[i] = (v[i-1]*v[i-3] - v[i-2]^2)/v[i-4]); v[n])};
-
{a(n) = my(E = ellinit([0, -1, 1, -2, 2]), z); z = ellpointtoz(E, [1, 0]); -(-1)^n*round(ellsigma(E, n*z)/ellsigma(E, z)^(n^2))};
-
{a(n) = my(E = ellinit([0, -1, 1, -2, 2])); sign(n) * subst( elldivpol( E, abs(n)), x, 1)};
Duplicate term a(15)=2309453 removed by
Georg Fischer, May 05 2025
A362718
Expansion of e.g.f. cos(x)*exp(x^2/2) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!.
Original entry on oeis.org
1, 0, -2, -16, -132, -1216, -12440, -138048, -1601264, -18108928, -161934624, 404007680, 92590134208, 4221314202624, 159324751301248, 5730872535686144, 205239818509082880, 7450322829180649472, 276342876017093172736, 10509280308463090102272
Offset: 0
-
a[ n_] := If[ n<0, 0, (2*n)! * SeriesCoefficient[ Cos[x] * Exp[x^2/2], {x, 0, 2*n}]];
-
{a(n) = my(A); if( n<0, 0, A = x*O(x^(2*n)); (2*n)! * polcoef( cos(x + A)*exp(x^2/2 + A), 2*n))};
-
def egfExpand(f, step, size) -> list[int]:
x = LazyPowerSeriesRing(QQ, "x").gen()
return [f(x)[step*n] * factorial(step*n) for n in range(size+1)]
def egf(x): return cos(x)*exp(x^2/2)
print(egfExpand(egf, 2, 19)) # Peter Luschny, May 02 2023
A358735
Triangular array read by rows. T(n, k) is the coefficient of x^k in a(n+3) where a(1) = a(2) = a(3) = 1 and a(m+2) = (m*x + 2)*a(m+1) - a(m) for all m in Z.
Original entry on oeis.org
1, 1, 1, 1, 4, 2, 1, 10, 16, 6, 1, 20, 70, 76, 24, 1, 35, 224, 496, 428, 120, 1, 56, 588, 2260, 3808, 2808, 720, 1, 84, 1344, 8140, 23008, 32152, 21096, 5040, 1, 120, 2772, 24772, 107328, 245560, 298688, 178848, 40320
Offset: 0
a(3) = 1, a(4) = 1 + x, a(5) = 1 + 4*x + 2*x^2.
Triangular array T(n, k) starts:
n\k | 0 1 2 3 4 5
--- + - --- --- --- --- ---
0 | 1
1 | 1 1
2 | 1 4 2
3 | 1 10 16 6
4 | 1 20 70 76 24
5 | 1 35 224 496 428 120
-
T[ n_, k_] := If[ n<0, 0, Module[{a = Table[1, n+3], x}, Do[ a[[m]] = a[[m-1]] *(a[[m-1]] + x*a[[m-2]] + a[[m-3]])/a[[m-2]] - a[[m-2]] //Factor//Expand, {m, 4, n+3}]; Coefficient[ a[[n+3]], x, k]]];
-
{T(n, k) = if( n<0, 0, my(a = vector(n+3, i, 1)); for(m = 4, n+3, a[m] = a[m-1]*(a[m-1] + 'x*a[m-2] + a[m-3])/a[m-2] - a[m-2]); polcoeff( a[n+3], k))};
A360381
Generalized Somos-5 sequence a(n) = (a(n-1)*a(n-4) + a(n-2)*a(n-3))/a(n-5) = -a(-n), a(1) = 1, a(2) = -1, a(3) = a(4) = 1, a(5) = -7.
Original entry on oeis.org
0, 1, -1, 1, 1, -7, 8, -1, -57, 391, -455, -2729, 22352, -175111, 47767, 8888873, -69739671, 565353361, 3385862936, -195345149609, 1747973613295, -4686154246801, -632038062613231, 34045765616463119, -319807929289790304, -11453004955077020783
Offset: 0
5*P = (50/49, 20/343) and a(5) = -7, 6*P = (121/64, -1881/512) and a(6) = 8.
-
a[0] = 0; a[1] = a[3] = a[4] = 1; a[2] = -1; a[5] = -7;
a[n_?Negative] := -a[-n];
a[n_] := a[n] = (a[n-1] a[n-4] + a[n-2] a[n-3]) / a[n-5]; (* Andrey Zabolotskiy, Feb 05 2023 *)
a[ n_] := Module[{A = Table[1, Max[5, Abs[n]]]}, A[[2]] = -1; A[[5]] = -7; Do[ A[[k]] = (A[[k-1]]*A[[k-4]] + A[[k-2]]*A[[k-3]])/A[[k-5]], {k, 6, Length[A]}]; If[n==0, 0, Sign[n]*A[[Abs[n]]] ]];
-
{a(n) = my(A = vector(max(5, abs(n)), k, 1)); A[2] = -1; A[5] = -7; for(k=6, #A, A[k] = (A[k-1]*A[k-4] + A[k-2]*A[k-3])/A[k-5]); if(n==0, 0, sign(n)*A[abs(n)])};
-
{a(n) = my(E = ellinit([1, 1, 0, -2, 0])); subst(elldivpol(E, n), 'x, 2) *(-1)^(n-1) / 6^((n-1)%2 + n^2\4)}; /* Michael Somos, Mar 01 2025 */
A360187
Generalized Somos-5 sequence with a(n) = (-a(n-1)*a(n-4) + 42*a(n-2)*a(n-3))/a(n-5), a(-n) = a(n), a(0) = a(1) = 1, a(2) = 3.
Original entry on oeis.org
1, 1, 3, 13, 113, 1525, 57123, 2165017, 262621633, 42422452969, 14070212996451, 7658246457672229, 10650393355715621873, 15512114571284835412957, 75606222210863532170808003, 452005526897888844293504165425
Offset: 0
2*P + T = (-8/9, -28/27). 3*P + T = (-1/169, 239/2197).
-
a[ m_] := With[{n = Abs[m]}, If[ n<3, {1, 1, 3}[[n+1]], (-a[n-1]*a[n-4] + 42*a[n-2]*a[n-3])/a[n-5]]];
-
{a(n) = my(E = ellinit([-2, 0])); sqrtint(denominator(elladd(E, [0, 0], ellmul(E, [2, 2], n))[1]))};
-
{a(n) = my(A); n = abs(n); A = vector(max(4, n+1), k, 1); A[3] = 3; A[4] = 13; for(k = 4, n, A[k+1] = (if(k%2, 4, 8)*A[k]*A[k-2] + A[k-1]^2)/A[k-3]); A[n+1]};
A357537
a(n) = 2*A080635(n) if n > 0. a(0) = 1.
Original entry on oeis.org
1, 2, 2, 6, 18, 78, 378, 2214, 14562, 108702, 897642, 8171766, 81066258, 871695918, 10091490138, 125189658054, 1656458307522, 23288226400062, 346663764078282, 5447099463010326, 90094171024954098, 1564653992673809358, 28467075416816935098, 541467979789775621094
Offset: 0
G.f. = 1 + 2*x + 2*x^2 + 6*x^3 + 18*x^4 + 78*x^5 + 378*x^6 + ...
E.g.f. = 1 + 2*x + x^2 + x^3 + 3/4*x^4 + 13/20*x^5 + 21/40*x^6 + ...
-
a[ n_] := If[ n < 0, 0, n! Simplify@SeriesCoefficient[ Sqrt[3] Tan[ Pi/6 + x Sqrt[3]/2], {x, 0, n}]];
a[ n_] := If[ n < 0, 0, Nest[Expand[(1 + x + x^2) D[#, x]]&, 1 + 2 x, n] /. x->0];
-
{a(n) = my(A); if(n<0, 0, A = 1 + 2*x; for( k=1, n, A = A' * (1 + x + x^2)); polcoeff(A, 0))};
A357438
Triangle T(n,k) read by rows, defined by the equation f(x, y) := Sum_{n, k} T(n, k) * y^k * x^n = 1/(1 - x*y - x^2*y*f(x, y+1)).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 2, 6, 6, 1, 0, 5, 16, 20, 10, 1, 0, 15, 51, 71, 50, 15, 1, 0, 52, 186, 281, 231, 105, 21, 1, 0, 203, 759, 1223, 1114, 616, 196, 28, 1, 0, 877, 3409, 5795, 5701, 3564, 1428, 336, 36, 1, 0, 4140, 16655, 29634, 31011, 21187, 9780
Offset: 1
Triangle starts:
1,
0, 1,
0, 1, 1,
0, 1, 3, 1,
0, 2, 6, 6, 1,
0, 5, 16, 20, 10, 1,
0, 15, 51, 71, 50, 15, 1,
0, 52, 186, 281, 231, 105, 21, 1,
0, 203, 759, 1223, 1114, 616, 196, 28, 1,
0, 877, 3409, 5795, 5701, 3564, 1428, 336, 36, 1,
...
-
T[ n_, k_] := If[n < 0, 0, Coefficient[SeriesCoefficient[ Nest[ 1/(1 - x*y - x^2*y*(#/.y -> y+1))&, 1 + O[x], Ceiling[n/2]], {x, 0, n}], y, k]];
-
{T(n, k) = if(n < 0, 0, f = 1 + O(x); forstep(i=1, n, 2, f = 1/(1 - x*y - x^2*y*subst(f, y, y+1))); polcoef(polcoef(f, n), k))};
A352625
A (25,-29) Somos-4 sequence.
Original entry on oeis.org
1, 2, 7, 59, 1529, 83313, 7869898, 1687054711, 1123424582771, 1662315215971057, 4257998884448335457, 23385756731869683322514, 397068399296019032727466599, 15886280085653574502219650145963, 1107464108502549897934954766675333353, 157131202095317153373302215985417166354641
Offset: 0
G.f.: 1 + 2*x + 7*x^2 + 59*x^3 + 1529*x^4 + 83313*x^5 + ...
a(2) = 7 = 2*16 - 5*5 = det([2, 5; 5, 16]).
-
b[ n_] := If[OddQ[n], a[-(n-1)/2], a[n/2-1]]; a[ n_] := If[-3<=n<=1, {23, 3, 1, 1, 2}[[n+4]], 2*b[1-n]^3*b[2-n] + b[-n]^2*(b[2-n]*b[3-n] - b[1-n]*b[4-n])];
A338218
Number of terms in polynomial sequence s(n) = x*y*z*(s(n-1)*s(n-3) + s(n-2)^2)/s(n-4), with s(1) = x, s(2) = s(3) = 1, s(4) = y.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 6, 12, 23, 43, 80, 140, 233, 387, 612, 930, 1411, 2067, 2936, 4170, 5768, 7796, 10537, 13960, 18163, 23639, 30285, 38249, 48322, 60285, 74340, 91706, 111967, 135403
Offset: 1
a(6) = 3 because s(6) = x*y^3*z^2 + x*y^3*z + x*y^2*z^2 has 3 terms.
-
a[ n_] := If[1 <= n <= 4, 1, RecurrenceTable[{s[m]*s[m - 4] == x*y*z*(s[m - 1]*s[m - 3] + s[m - 2]^2), s[1] == x, s[2] == 1, s[3] == 1, s[4] == y}, s, {m, Max[n, 5 - n]}] // Last // Factor // Expand // Length];
Comments