cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Alois P. Heinz

Alois P. Heinz's wiki page.

Alois P. Heinz has authored 6539 sequences. Here are the ten most recent ones:

A385245 Primes that are no longer prime if in their binary representation any single bit is flipped but stay prime if a 1 bit is prepended.

Original entry on oeis.org

223, 257, 509, 787, 853, 877, 1259, 1451, 1973, 2917, 3511, 5099, 6287, 6521, 7841, 8171, 8923, 9319, 10567, 11353, 12517, 12637, 12763, 13687, 14107, 14629, 15217, 15607, 16943, 17519, 18089, 18593, 18743, 19139, 20183, 20393, 20639, 21701, 22943, 26591, 26891
Offset: 1

Author

Alois P. Heinz, Jul 28 2025

Keywords

Examples

			257 = 100000001_2 and 769 = 1100000001_2 are primes and 256, 259, 261, 265, 273, 289, 321, 385, 1 are not prime. So 257 is a term.
		

Crossrefs

Set difference of A137985 and A065092.

Programs

  • Maple
    q:= p-> (m-> andmap(isprime, [p, 2^(m+1)+p]) and not ormap
            (i->isprime(Bits[Xor](p, 2^i)), [$0..m]))(ilog2(p)):
    select(q, [$2..27000])[];
  • Mathematica
    Select[Prime[Range[3000]], PrimeQ[2^BitLength[#] + #] && NoneTrue[BitXor[#, 2^Range[0, BitLength[#] - 1]], PrimeQ] &] (* Paolo Xausa, Aug 05 2025 *)

Formula

{ A137985 } minus { A065092 }.

A386247 Primes containing 000 as a substring.

Original entry on oeis.org

10007, 10009, 40009, 70001, 70003, 70009, 90001, 90007, 100003, 100019, 100043, 100049, 100057, 100069, 130003, 140009, 150001, 160001, 160009, 170003, 180001, 180007, 200003, 200009, 200017, 200023, 200029, 200033, 200041, 200063, 200087, 220009, 230003, 240007
Offset: 1

Author

Alois P. Heinz, Jul 16 2025

Keywords

Comments

Differs from A164968 first at n=10: a(10) = 100019 < 200003 = A164968(10).

Programs

  • Mathematica
    Select[Prime[Range[1230, 25000]], StringContainsQ[IntegerString[#], "000"] &] (* Paolo Xausa, Jul 19 2025 *)

A385413 Number of solid standard Young tableaux of 2n cells and height >= n.

Original entry on oeis.org

1, 3, 23, 261, 3787, 63395, 1191041, 24547919, 549727747, 13239969349, 340470351905, 9279758909457, 266461484866363
Offset: 0

Author

Alois P. Heinz, Jun 27 2025

Keywords

Crossrefs

Cf. A215120.

Formula

a(n) = A215120(2n,n).

A385408 Sum over all ordered partitions of [n] of 6^j for an ordered partition with j inversions.

Original entry on oeis.org

1, 1, 8, 388, 113480, 199246816, 2099255895008, 132708276995157568, 50336523318422432038400, 114556539064849604787867141376, 1564256035642651626332994903500876288, 128158392280785912677966097933268099449960448, 62999559569114394473388668602373642996554916532377600
Offset: 0

Author

Alois P. Heinz, Jun 27 2025

Keywords

Crossrefs

Column k=6 of A381426.

Programs

  • Maple
    b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2), 0)+add(6^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..14);

Formula

a(n) = Sum_{k=0..binomial(n,2)} A381299(n,k)*6^k.

A385299 Number of Schröder paths of semilength 2n and having n valleys.

Original entry on oeis.org

1, 1, 11, 155, 2554, 46377, 899107, 18269407, 384577010, 8321452706, 184074021999, 4145999605431, 94799675260406, 2195442934642375, 51402741095491155, 1214975868437406375, 28956949406425290114, 695214262740084758154, 16800125921481031616230, 408354422827279445763942
Offset: 0

Author

Alois P. Heinz, Jun 24 2025

Keywords

Comments

A Schröder path of semilength n is a lattice path starting from (0,0), ending at (2n,0), consisting only of steps U=(1,1) (up steps), D=(1,-1) (down steps) and H=(2,0) (level steps) and never going below the x-axis.

Examples

			a(0) = 1: the empty path.
a(1) = 1: UDUD.
a(2) = 11: HUDUDUD, UUDDUDUD, UHDUDUD, UDUUDDUD, UUDUDDUD, UDUHDUD, UDUDUUDD, UDUUDUDD, UUDUDUDD, UDUDUHD, UDUDUDH.
		

Crossrefs

Cf. A006318, A007004 (the same for peaks), A101282.

Programs

  • Maple
    b:= proc(x, y, t, c) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, `if`(c=0, 1, 0), b(x-1, y-1, 1, c+1)+
            b(x-1, y+1, 0, c+1-4*t)+b(x-2, y, 0, c+2)))
        end:
    a:= n-> b(4*n, 0$3):
    seq(a(n), n=0..19);

Formula

a(n) = A101282(2n,n).
a(n) = Sum_{k=0..n-1} (k+1)/(2*n-k)*C(2*n-k,n)*C(3*n-k,2*n+1) for n>=1, a(0) = 1.
a(n) ~ 3^(3*n + 5/2) / (50*Pi*n^2). - Vaclav Kotesovec, Jun 27 2025

A384676 Binomial transform of A111107.

Original entry on oeis.org

2, 5, 13, 37, 101, 271, 727, 1931, 5003, 12547, 30449, 71761, 165037, 372149, 826303, 1813219, 3944921, 8533073, 18393821, 39588071, 85192381, 183479291, 395667617, 854417989, 1847225579, 3996807053, 8650687127, 18721431499, 40496966207, 87538925959, 189076973699
Offset: 0

Author

Alois P. Heinz, Jun 06 2025

Keywords

Comments

All terms are primes.

Crossrefs

Formula

a(n) = Sum_{i=0..n} A111107(n-i) * binomial(n,i).

A384498 Squarefree numbers whose distinct prime factors can be partitioned into two sets with equal sums.

Original entry on oeis.org

1, 30, 70, 286, 646, 1798, 2145, 2310, 2730, 3135, 3526, 3570, 4641, 4845, 5005, 5610, 6006, 6279, 6630, 7198, 7410, 7854, 8778, 8855, 8970, 9177, 10366, 10374, 10626, 10695, 11305, 11571, 11730, 13110, 13485, 13566, 13585, 15470, 16095, 16302, 16422, 16530
Offset: 1

Author

Alois P. Heinz, May 31 2025

Keywords

Examples

			2145 = 3*5*11*13 is a term because it is squarefree and 3+13 = 5+11.
16422 = 2*3*7*17*23 is squarefree and 2+7+17 = 3+23.
		

Crossrefs

Intersection of A005117 and A221054.

Programs

  • Maple
    q:= n-> (l-> {l[.., 2][]} minus {1}={} and (s->
            (m-> m::even and coeff(mul(1+x^j, j=s), x, m/2)>0)
            (add(i, i=s)))({l[.., 1][]}))(ifactors(n)[2]):
    select(q, [$1..20000])[];
  • Mathematica
    Join[{1},Select[Range[16600],SquareFreeQ[#]&&MemberQ[Total/@Subsets[First/@FactorInteger[#]],Total[First/@FactorInteger[#]]/2]&]] (* James C. McMahon, Jun 02 2025 *)

A384368 Number of permutations of [2n] with n inversions.

Original entry on oeis.org

1, 1, 5, 29, 174, 1068, 6655, 41926, 266338, 1703027, 10947079, 70673825, 457927079, 2976282415, 19395654894, 126688273871, 829176461458, 5436687172806, 35703722618623, 234807844921153, 1546217013188447, 10193761267335877, 67275841673522196, 444431529264364506
Offset: 0

Author

Alois P. Heinz, May 27 2025

Keywords

Examples

			a(0) = 1: the empty permutation.
a(1) = 1: 21.
a(2) = 5: 1342, 1423, 2143, 2314, 3124.
a(3) = 29: 123654, 124563, 124635, 125364, 125436, 126345, 132564, 132645, 134265, 134526, 135246, 142365, 142536, 143256, 152346, 213564, 213645, 214365, 214536, 215346, 231465, 231546, 234156, 241356, 312465, 312546, 314256, 321456, 412356.
		

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(mul((1-q^j)/(1-q), j=1..2*n), q, n+1), q, n):
    seq(a(n), n=0..23);

Formula

a(n) = A008302(2n,n).
a(n) ~ c * 3^(3*n - 1/2) / (sqrt(Pi*n) * 2^(2*n)), where c = QPochhammer(1/3) = A100220 = 0.5601260779279489449697922433141400143797363337983... - Vaclav Kotesovec, Jun 09 2025

A382780 Sum of the orders of all permutations of [n] with distinct cycle lengths.

Original entry on oeis.org

1, 1, 2, 12, 48, 360, 2520, 22680, 221760, 2298240, 28425600, 385862400, 5269017600, 80951270400, 1347631084800, 21565729785600, 413922526617600, 8409043612569600, 172028224598630400, 3765253760710041600, 84080417596471296000, 1935910813364656128000
Offset: 0

Author

Alois P. Heinz, May 11 2025

Keywords

Examples

			a(3) = 12 = 2+2+2+3+3: (1)(23), (13)(2), (12)(3), (123), (132).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, m) option remember; `if`(i*(i+1)/2 b(n$2, 1):
    seq(a(n), n=0..22);

A382781 Sum of GCD of cycle lengths over all permutations of [n] with distinct cycle lengths.

Original entry on oeis.org

0, 1, 2, 9, 32, 170, 1164, 7434, 62880, 582336, 5875200, 60041520, 841501440, 9440926560, 141618778560, 2222190784800, 34862691548160, 543348318159360, 11173101312844800, 186494289764106240, 4219768887634944000, 86094733814301542400, 1834643656963469721600
Offset: 0

Author

Alois P. Heinz, May 11 2025

Keywords

Examples

			a(3) = 9 = 3+3+1+1+1: (123), (132), (1)(23), (13)(2), (12)(3).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, m) option remember; `if`(i*(i+1)/2 b(n$2, 0):
    seq(a(n), n=0..22);