A381299 Irregular triangular array read by rows. T(n,k) is the number of ordered set partitions of [n] with exactly k descents, n>=0, 0<=k<=binomial(n,2).
1, 1, 2, 1, 4, 4, 4, 1, 8, 12, 18, 18, 12, 6, 1, 16, 32, 60, 84, 100, 92, 76, 48, 24, 8, 1, 32, 80, 176, 300, 448, 572, 650, 658, 596, 478, 334, 206, 102, 40, 10, 1, 64, 192, 480, 944, 1632, 2476, 3428, 4300, 5008, 5372, 5356, 4936, 4220, 3316, 2392, 1556, 904, 456, 188, 60, 12, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1; 2, 1; 4, 4, 4, 1; 8, 12, 18, 18, 12, 6, 1; 16, 32, 60, 84, 100, 92, 76, 48, 24, 8, 1; ...
Links
- Alois P. Heinz, Rows n = 0..50, flattened
- Kassie Archer, Ira M. Gessel, Christina Graves, and Xuming Liang, Counting acyclic and strong digraphs by descents, arXiv:1909.01550 [math.CO], 2019-2020.
- Kyle Celano, Jennifer Elder, Kimberly P. Hadaway, Pamela E. Harris, Amanda Priestley, and Gabe Udell, Inversions in parking functions, arXiv:2508.11587 [math.CO], 2025. See Theorem 1.
Crossrefs
Programs
-
Maple
b:= proc(o, u, t) option remember; expand(`if`(u+o=0, 1, `if`(t=1, b(u+o, 0$2), 0)+add(x^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)): seq(T(n), n=0..8); # Alois P. Heinz, Feb 21 2025
-
Mathematica
nn = 7; B[n_] := FunctionExpand[QFactorial[n, u]]; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, u] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[1/(1 -(e[z] - 1)), {z, 0, nn}], z]] // Grid
Formula
Sum_{k=0..binomial(n,2)} k * T(n,k) = A240796(n). - Alois P. Heinz, Feb 20 2025
T(n,k) is the coefficient of q^k in n!q times the coefficient of x^n in 1/(1- x - x^2/2!_q - x^3/3!_q - ...), where n!_q= 1*(1+q)*(1+q+q^2)*...*(1+q+...+q^(n-1)). - _Ira M. Gessel, Jun 24 2025
T(n,k) = Sum_{w} 2^(asc(w)), where w runs through the set of permutations with k inversions and asc(w) is the number of ascents of w. - Kyle Celano, Aug 18 2025
Comments