Geoffrey Critzer has authored 659 sequences. Here are the ten most recent ones:
A385355
Triangular array read by rows: T(n,k) is the number of n X n matrices A over GF(2) such that the dimension of the null space of A^n is equal to k, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 6, 6, 4, 168, 168, 112, 64, 20160, 20160, 13440, 7680, 4096, 9999360, 9999360, 6666240, 3809280, 2031616, 1048576, 20158709760, 20158709760, 13439139840, 7679508480, 4095737856, 2113929216, 1073741824, 163849992929280, 163849992929280, 109233328619520, 62419044925440, 33290157293568, 17182016667648, 8727373545472, 4398046511104
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
6, 6, 4;
168, 168, 112, 64;
20160, 20160, 13440, 7680, 4096;
9999360, 9999360, 6666240, 3809280, 2031616, 1048576;
...
-
nn = 6; q = 2; b[p_, i_] := Count[p, i]; d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];aut[deg_, p_] := Product[Product[ q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; \[Nu] = Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}]; l= Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]; \[Gamma][n_,q_] := Product[q^n - q^i, {i, 0, n - 1}];g[u_, v_, deg_, partitions_] := Total[Map[v^Total[#] u^(deg Total[#])/aut[deg, #] &, partitions]];Map[Select[#, # > 0 &] &,Table[\[Gamma][n, q], {n, 0, nn}] CoefficientList[Series[g[u, v, 1, l]*g[u, 1, 1, l] Product[g[u, 1, deg, l]^\[Nu][[deg]], {deg, 2, nn}], {u, 0, nn}], {u,v}]] // Grid
A384038
Number of 2n X 2n matrices M over GF(2) such that the column space of M is equal to the null space of M.
Original entry on oeis.org
1, 3, 210, 234360, 4047865920, 1092146608143360, 4650098142288472473600, 314462403262051153026062745600, 338960040818652280796119613717033779200, 5834618256563872511581456247120956565738854809600, 1605370810586153268821245248112723240374305354675084328960000
Offset: 0
a(1) = 3 because there are 3 matrices of size 2 X 2 over GF(2) with the desired property: {{0, 0}, {1, 0}}, {{0, 1}, {0, 0}}, {{1, 1}, {1, 1}}.
-
q = 2; b[p_, i_] := Count[p, i]; d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] := Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; Table[Product[2^(2 k) - 2^i, {i, 0, (2 k) - 1}]/aut[1, Table[2, {k}]], {k,0, 10}]
A383656
Triangular array read by rows: T(n,k) is the number of n-node Stanley graphs containing exactly k connected components, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 8, 11, 6, 1, 0, 52, 60, 35, 10, 1, 0, 502, 472, 255, 85, 15, 1, 0, 6824, 5166, 2422, 805, 175, 21, 1, 0, 127166, 76712, 30072, 9177, 2100, 322, 28, 1, 0, 3205924, 1526910, 486800, 129360, 28497, 4788, 546, 36, 1, 0, 108975934, 40603534, 10292970, 2285240, 455805, 76629, 9870, 870, 45, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 2, 3, 1;
0, 8, 11, 6, 1;
0, 52, 60, 35, 10, 1;
0, 502, 472, 255, 85, 15, 1;
...
-
nn = 8; Prepend[Table[(Range[0, nn]! CoefficientList[Series[(Exp[-x] g[x])^y, {x, 0, nn}], {x, y}])[[i,1 ;; i]], {i, 2, nn + 1}], {1}] // Grid
A383655
Triangle read by rows: T(n,k) is the number of n-node Stanley graphs containing exactly k isolated points, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 11, 8, 6, 0, 1, 72, 55, 20, 10, 0, 1, 677, 432, 165, 40, 15, 0, 1, 8686, 4739, 1512, 385, 70, 21, 0, 1, 152191, 69488, 18956, 4032, 770, 112, 28, 0, 1, 3632916, 1369719, 312696, 56868, 9072, 1386, 168, 36, 0, 1, 118317913, 36329160, 6848595, 1042320, 142170, 18144, 2310, 240, 45, 0, 1
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
1, 0, 1;
2, 3, 0, 1;
11, 8, 6, 0, 1;
72, 55, 20, 10, 0, 1;
...
-
nn = 10; g[x_] :=Total[Table[Sum[QBinomial[n, k, 2] x^n/n!, {k, 0, n}], {n, 0, nn}]]; Table[(Range[0, nn]! CoefficientList[Series[Exp[y x] Exp[-x] g[x] Exp[-x], {x, 0, nn}], {x, y}])[[i, 1 ;; i]], {i, 1, nn + 1}] // Grid
A382223
Rectangular array read by antidiagonals: T(n,k) is the number of labeled digraphs on [n] along with a (coloring) function c:[n] -> [k] with the property that for all u,v in [n], u->v implies u=0, k>=0.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 3, 1, 0, 1, 16, 12, 4, 1, 0, 1, 67, 66, 22, 5, 1, 0, 1, 374, 513, 172, 35, 6, 1, 0, 1, 2825, 5769, 1969, 355, 51, 7, 1, 0, 1, 29212, 95706, 33856, 5380, 636, 70, 8, 1, 0, 1, 417199, 2379348, 893188, 125090, 12006, 1036, 92, 9, 1
Offset: 0
1, 1, 1, 1, 1, 1, 1,...
0, 1, 2, 3, 4, 5, 6,...
0, 1, 5, 12, 22, 35, 51,...
0, 1, 16, 66, 172, 355, 636,...
0, 1, 67, 513, 1969, 5380, 12006,...
0, 1, 374, 5769, 33856, 125090, 352476,...
- Kassie Archer, Ira M. Gessel, Christina Graves, and Xuming Liang, Counting acyclic and strong digraphs by descents, Discrete Mathematics, Vol. 343, No. 11 (2020), 112041; arXiv preprint, arXiv:1909.01550 [math.CO], 2019-2020. See Table 2.
- R. P. Stanley, Acyclic orientation of graphs, Discrete Math. 5 (1973), 171-178. North Holland Publishing Company.
-
nn = 6; B[n_] := QFactorial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}]; zetapolys = Drop[Map[Expand[InterpolatingPolynomial[#, x]] &,Transpose[Table[Table[B[n], {n, 0, nn}] CoefficientList[Series[e[z]^k, {z, 0, nn}], z], {k, 1, nn}]]], -1];Table[zetapolys /. x -> i, {i, 0, nn}] // Transpose // Grid
A382363
Rectangular array read by antidiagonals, T(n,k) is the number of labeled digraphs on [n] along with a (coloring) function c:[n] -> [k] such that for all u,v in [n], u->v implies u<=v and c(u)<=c(v), n>=0, k>=0.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 8, 7, 3, 1, 0, 64, 44, 15, 4, 1, 0, 1024, 508, 129, 26, 5, 1, 0, 32768, 10976, 1962, 284, 40, 6, 1, 0, 2097152, 450496, 54036, 5371, 530, 57, 7, 1, 0, 268435456, 35535872, 2747880, 180424, 11995, 888, 77, 8, 1, 0, 68719476736, 5435551744, 262091808, 10997576, 476165, 23409, 1379, 100, 9, 1
Offset: 0
1, 1, 1, 1, 1, 1, 1,...
0, 1, 2, 3, 4, 5, 6,...
0, 2, 7, 15, 26, 40, 57,...
0, 8, 44, 129, 284, 530, 888,...
0, 64, 508, 1962, 5371, 11995, 23409,...
0, 1024, 10976, 54036, 180424, 476165, 1072854,...
- Kassie Archer, Ira M. Gessel, Christina Graves, and Xuming Liang, Counting acyclic and strong digraphs by descents, Discrete Mathematics, Vol. 343, No. 11 (2020), 112041; arXiv preprint, arXiv:1909.01550 [math.CO], 2019-2020; See Table 2.
- R. P. Stanley, Acyclic orientation of graphs, Discrete Math. 5 (1973), 171-178. North Holland Publishing Company.
-
nn = 6; B[n_] := QFactorial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}]; zetapolys = Drop[Map[Expand[InterpolatingPolynomial[#, x]] &,Transpose[Table[Table[B[n], {n, 0, nn}] CoefficientList[Series[1/e[-z]^k, {z, 0, nn}], z], {k,1,nn}]]],-1];Table[zetapolys /. x -> i, {i, 0, nn}] // Transpose // Grid
A381930
Irregular triangular array read by rows. T(n,k) is the number of length n words x on {0,1,2} such that I(x) + W_0(x)*W_1(x) + W_0(x)*W_2(x) + W_1(x)*W_2(x) = k where I(x) is the number of inversions in x and W_i(x) is the number of occurrences of the letter i in x for i={0,1,2}, n>=0, 0<=k<=floor(2n^2/3).
Original entry on oeis.org
1, 3, 3, 3, 3, 3, 0, 6, 7, 8, 2, 1, 3, 0, 0, 6, 9, 12, 18, 12, 12, 6, 3, 3, 0, 0, 0, 6, 6, 12, 15, 27, 27, 36, 33, 33, 21, 15, 6, 3, 3, 0, 0, 0, 0, 6, 6, 6, 12, 18, 27, 33, 52, 62, 77, 82, 86, 75, 68, 48, 35, 19, 11, 2, 1
Offset: 0
Triangle T(n,k) begins:
1;
3;
3, 3, 3;
3, 0, 6, 7, 8, 2, 1;
3, 0, 0, 6, 9, 12, 18, 12, 12, 6, 3;
3, 0, 0, 0, 6, 6, 12, 15, 27, 27, 36, 33, 33, 21, 15, 6, 3;
...
T(3,3) = 7 because we have: {0, 1, 0}, {0, 1, 2}, {0, 2, 0}, {1, 0, 1}, {1, 2, 1}, {2, 0, 2}, {2, 1, 2}.
-
b:= proc(n, i, j, k) option remember; expand(
`if`(n=0, z^(i*j+i*k+j*k), b(n-1, i+1, j, k)*z^(j+k)+
b(n-1, i, j+1, k)*z^k +b(n-1, i, j, k+1)))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$3)):
seq(T(n), n=0..10); # Alois P. Heinz, Mar 10 2025
-
nn = 6; B[n_] := FunctionExpand[QFactorial[n, q]]*q^Binomial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, q] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[e[z]^3, {z, 0, nn}],z]] // Grid
A381899
Irregular triangular array read by rows. T(n,k) is the number of length n words x on {0,1} such that I(x) + W(x)*(n-W(x)) = k, where I(x) is the number of inversions in x and W(x) is the number of 1's in x, n >= 0, 0 <= k <= floor(n^2/2).
Original entry on oeis.org
1, 2, 2, 1, 1, 2, 0, 2, 2, 2, 2, 0, 0, 2, 3, 3, 4, 1, 1, 2, 0, 0, 0, 2, 2, 4, 4, 6, 4, 4, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 4, 5, 7, 6, 9, 7, 7, 5, 4, 1, 1, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 4, 4, 8, 6, 10, 12, 14, 12, 14, 10, 10, 6, 4, 2, 2
Offset: 0
Triangle T(n,k) begins:
1;
2;
2, 1, 1;
2, 0, 2, 2, 2;
2, 0, 0, 2, 3, 3, 4, 1, 1;
2, 0, 0, 0, 2, 2, 4, 4, 6, 4, 4, 2, 2;
...
T(4,5) = 3 because we have: {0, 1, 0, 0}, {0, 1, 0, 1}, {1, 1, 0, 1}.
-
b:= proc(i, j) option remember; expand(`if`(i+j=0, 1,
`if`(i=0, 0, b(i-1, j))+`if`(j=0, 0, b(i, j-1)*z^i)))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(
expand(add(b(n-j, j)*z^(j*(n-j)), j=0..n))):
seq(T(n), n=0..10); # Alois P. Heinz, Mar 09 2025
-
nn = 7; B[n_] := FunctionExpand[QFactorial[n, q]]*q^Binomial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}]; Map[CoefficientList[#, q] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[e[z]^2, {z, 0, nn}],z]]
A381299
Irregular triangular array read by rows. T(n,k) is the number of ordered set partitions of [n] with exactly k descents, n>=0, 0<=k<=binomial(n,2).
Original entry on oeis.org
1, 1, 2, 1, 4, 4, 4, 1, 8, 12, 18, 18, 12, 6, 1, 16, 32, 60, 84, 100, 92, 76, 48, 24, 8, 1, 32, 80, 176, 300, 448, 572, 650, 658, 596, 478, 334, 206, 102, 40, 10, 1, 64, 192, 480, 944, 1632, 2476, 3428, 4300, 5008, 5372, 5356, 4936, 4220, 3316, 2392, 1556, 904, 456, 188, 60, 12, 1
Offset: 0
Triangle T(n,k) begins:
1;
1;
2, 1;
4, 4, 4, 1;
8, 12, 18, 18, 12, 6, 1;
16, 32, 60, 84, 100, 92, 76, 48, 24, 8, 1;
...
- Alois P. Heinz, Rows n = 0..50, flattened
- Kassie Archer, Ira M. Gessel, Christina Graves, and Xuming Liang, Counting acyclic and strong digraphs by descents, arXiv:1909.01550 [math.CO], 2019-2020.
- Kyle Celano, Jennifer Elder, Kimberly P. Hadaway, Pamela E. Harris, Amanda Priestley, and Gabe Udell, Inversions in parking functions, arXiv:2508.11587 [math.CO], 2025. See Theorem 1.
Cf.
A000670 (row sums),
A008302 (the cases where each block has size 1).
Cf.
A125810,
A161680,
A240796,
A289545,
A347841,
A347842,
A347843,
A347844,
A347845,
A347846,
A385408.
-
b:= proc(o, u, t) option remember; expand(`if`(u+o=0, 1, `if`(t=1,
b(u+o, 0$2), 0)+add(x^(u+j-1)*b(o-j, u+j-1, 1), j=1..o)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
seq(T(n), n=0..8); # Alois P. Heinz, Feb 21 2025
-
nn = 7; B[n_] := FunctionExpand[QFactorial[n, u]]; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, u] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[1/(1 -(e[z] - 1)), {z, 0, nn}], z]] // Grid
A381192
Irregular triangle read by rows. Properly color the vertices of a simple labeled graph on [n] using exactly n colors c_1=0, 0<=k<=binomial(n,2).
Original entry on oeis.org
1, 1, 3, 1, 21, 19, 7, 1, 315, 516, 419, 208, 65, 12, 1, 9765, 24186, 31445, 27488, 17538, 8420, 3050, 816, 153, 18, 1, 615195, 2080323, 3769767, 4754751, 4592847, 3555479, 2257723, 1188595, 519745, 187705, 55237, 12941, 2325, 301, 25, 1
Offset: 0
1;
1;
3, 1;
21, 19, 7, 1;
315, 516, 419, 208, 65, 12, 1;
9765, 24186, 31445, 27488, 17538, 8420, 3050, 816, 153, 18, 1;
...
-
nn = 6; B[n_] :=FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]] (1 + y)^Binomial[n, 2]; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, u] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[1/(1 - z), {z, 0, nn}], z] /. y -> 1] // Grid
Comments