cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Geoffrey Critzer

Geoffrey Critzer's wiki page.

Geoffrey Critzer has authored 659 sequences. Here are the ten most recent ones:

A385355 Triangular array read by rows: T(n,k) is the number of n X n matrices A over GF(2) such that the dimension of the null space of A^n is equal to k, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 6, 6, 4, 168, 168, 112, 64, 20160, 20160, 13440, 7680, 4096, 9999360, 9999360, 6666240, 3809280, 2031616, 1048576, 20158709760, 20158709760, 13439139840, 7679508480, 4095737856, 2113929216, 1073741824, 163849992929280, 163849992929280, 109233328619520, 62419044925440, 33290157293568, 17182016667648, 8727373545472, 4398046511104
Offset: 0

Author

Geoffrey Critzer, Jun 26 2025

Keywords

Comments

Conjecture: In the limit as n goes to infinity the probability that the nullity of such a random matrix is equal to k is Product_{i>=1} (1-1/2^i * 2^binomial(k,2)/A005329(k)).

Examples

			Triangle T(n,k) begins:
        1;
        1,       1;
        6,       6,       4;
      168,     168,     112,      64;
    20160,   20160,   13440,    7680,    4096;
  9999360, 9999360, 6666240, 3809280, 2031616, 1048576;
  ...
		

Crossrefs

Cf. A002884 (column k=0), A053763 (main diagonal), A002416 (row sums), A005329.

Programs

  • Mathematica
    nn = 6; q = 2; b[p_, i_] := Count[p, i]; d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];aut[deg_, p_] := Product[Product[ q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; \[Nu] = Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}]; l= Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]; \[Gamma][n_,q_] := Product[q^n - q^i, {i, 0, n - 1}];g[u_, v_, deg_, partitions_] := Total[Map[v^Total[#] u^(deg Total[#])/aut[deg, #] &, partitions]];Map[Select[#, # > 0 &] &,Table[\[Gamma][n, q], {n, 0, nn}] CoefficientList[Series[g[u, v, 1, l]*g[u, 1, 1, l] Product[g[u, 1, deg, l]^\[Nu][[deg]], {deg, 2, nn}], {u, 0, nn}], {u,v}]] // Grid

A384038 Number of 2n X 2n matrices M over GF(2) such that the column space of M is equal to the null space of M.

Original entry on oeis.org

1, 3, 210, 234360, 4047865920, 1092146608143360, 4650098142288472473600, 314462403262051153026062745600, 338960040818652280796119613717033779200, 5834618256563872511581456247120956565738854809600, 1605370810586153268821245248112723240374305354675084328960000
Offset: 0

Author

Geoffrey Critzer, May 17 2025

Keywords

Comments

Let M be a 2n X 2n matrix over GF(2) such that the column space of M is equal to the null space of M. Then M is idempotent and nullity(M) = n and index(M) = 2. If M' is similar to M then the column space of M' equals the null space of M'. Moreover, all such matrices are in the same similarity class (see Hoffman link).

Examples

			a(1) = 3 because there are 3 matrices of size 2 X 2 over GF(2) with the desired property: {{0, 0}, {1, 0}}, {{0, 1}, {0, 0}}, {{1, 1}, {1, 1}}.
		

Crossrefs

Programs

  • Mathematica
    q = 2; b[p_, i_] := Count[p, i]; d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] := Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; Table[Product[2^(2 k) - 2^i, {i, 0, (2 k) - 1}]/aut[1, Table[2, {k}]], {k,0, 10}]

Formula

a(n) = A002884(n)*A006098(n).

A383656 Triangular array read by rows: T(n,k) is the number of n-node Stanley graphs containing exactly k connected components, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 8, 11, 6, 1, 0, 52, 60, 35, 10, 1, 0, 502, 472, 255, 85, 15, 1, 0, 6824, 5166, 2422, 805, 175, 21, 1, 0, 127166, 76712, 30072, 9177, 2100, 322, 28, 1, 0, 3205924, 1526910, 486800, 129360, 28497, 4788, 546, 36, 1, 0, 108975934, 40603534, 10292970, 2285240, 455805, 76629, 9870, 870, 45, 1
Offset: 0

Author

Geoffrey Critzer, May 04 2025

Keywords

Comments

For precise definition see the links: David Bevan and others (2023) or D.E. Knuth (1997).

Examples

			Triangle begins:
 1;
 0, 1;
 0, 1, 1;
 0, 2, 3, 1;
 0, 8, 11, 6, 1;
 0, 52, 60, 35, 10, 1;
 0, 502, 472, 255, 85, 15, 1;
 ...
		

Crossrefs

Cf. A323843 (column k=1), A135922 (row sums).

Programs

  • Mathematica
    nn = 8; Prepend[Table[(Range[0, nn]! CoefficientList[Series[(Exp[-x] g[x])^y, {x, 0, nn}], {x, y}])[[i,1 ;; i]], {i, 2, nn + 1}], {1}] // Grid

Formula

E.g.f.: f(x)^y where f(x) is the e.g.f. for A135922.

A383655 Triangle read by rows: T(n,k) is the number of n-node Stanley graphs containing exactly k isolated points, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 11, 8, 6, 0, 1, 72, 55, 20, 10, 0, 1, 677, 432, 165, 40, 15, 0, 1, 8686, 4739, 1512, 385, 70, 21, 0, 1, 152191, 69488, 18956, 4032, 770, 112, 28, 0, 1, 3632916, 1369719, 312696, 56868, 9072, 1386, 168, 36, 0, 1, 118317913, 36329160, 6848595, 1042320, 142170, 18144, 2310, 240, 45, 0, 1
Offset: 0

Author

Geoffrey Critzer, May 04 2025

Keywords

Comments

For precise definition see the links: David Bevan and others (2023) or D.E. Knuth (1997).

Examples

			Triangle T(n,k) begins:
   1;
   0,  1;
   1,  0,  1;
   2,  3,  0,  1;
  11,  8,  6,  0, 1;
  72, 55, 20, 10, 0, 1;
  ...
		

Crossrefs

Cf. A323842 (column k=0), A135922 (row sums).

Programs

  • Mathematica
    nn = 10; g[x_] :=Total[Table[Sum[QBinomial[n, k, 2] x^n/n!, {k, 0, n}], {n, 0, nn}]]; Table[(Range[0, nn]! CoefficientList[Series[Exp[y x] Exp[-x] g[x] Exp[-x], {x, 0, nn}], {x, y}])[[i, 1 ;; i]], {i, 1, nn + 1}] // Grid

Formula

E.g.f.: exp((y-1)*x)*f(x) where f(x) is the e.g.f. for A135922.

A382223 Rectangular array read by antidiagonals: T(n,k) is the number of labeled digraphs on [n] along with a (coloring) function c:[n] -> [k] with the property that for all u,v in [n], u->v implies u=0, k>=0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 3, 1, 0, 1, 16, 12, 4, 1, 0, 1, 67, 66, 22, 5, 1, 0, 1, 374, 513, 172, 35, 6, 1, 0, 1, 2825, 5769, 1969, 355, 51, 7, 1, 0, 1, 29212, 95706, 33856, 5380, 636, 70, 8, 1, 0, 1, 417199, 2379348, 893188, 125090, 12006, 1036, 92, 9, 1
Offset: 0

Author

Geoffrey Critzer, Mar 23 2025

Keywords

Examples

			 1, 1,   1,    1,     1,      1,      1,...
 0, 1,   2,    3,     4,      5,      6,...
 0, 1,   5,   12,    22,     35,     51,...
 0, 1,  16,   66,   172,    355,    636,...
 0, 1,  67,  513,  1969,   5380,  12006,...
 0, 1, 374, 5769, 33856, 125090, 352476,...
		

Crossrefs

Cf. A006116 column k=2, A289539 column k=3, A005329, A382363.

Programs

  • Mathematica
    nn = 6; B[n_] := QFactorial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}]; zetapolys = Drop[Map[Expand[InterpolatingPolynomial[#, x]] &,Transpose[Table[Table[B[n], {n, 0, nn}] CoefficientList[Series[e[z]^k, {z, 0, nn}], z], {k, 1, nn}]]], -1];Table[zetapolys /. x -> i, {i, 0, nn}] // Transpose // Grid

Formula

Sum_{n>=0} T(n,k)/A005329(n) = e(x)^k, where e(x) = Sum_{n>=0}x^n/A005329(n).

A382363 Rectangular array read by antidiagonals, T(n,k) is the number of labeled digraphs on [n] along with a (coloring) function c:[n] -> [k] such that for all u,v in [n], u->v implies u<=v and c(u)<=c(v), n>=0, k>=0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 8, 7, 3, 1, 0, 64, 44, 15, 4, 1, 0, 1024, 508, 129, 26, 5, 1, 0, 32768, 10976, 1962, 284, 40, 6, 1, 0, 2097152, 450496, 54036, 5371, 530, 57, 7, 1, 0, 268435456, 35535872, 2747880, 180424, 11995, 888, 77, 8, 1, 0, 68719476736, 5435551744, 262091808, 10997576, 476165, 23409, 1379, 100, 9, 1
Offset: 0

Author

Geoffrey Critzer, Mar 23 2025

Keywords

Examples

			  1,    1,     1,     1,      1,      1,       1,...
  0,    1,     2,     3,      4,      5,       6,...
  0,    2,     7,    15,     26,     40,      57,...
  0,    8,    44,   129,    284,    530,     888,...
  0,   64,   508,  1962,   5371,  11995,   23409,...
  0, 1024, 10976, 54036, 180424, 476165, 1072854,...
		

Crossrefs

Cf. A382223, A006125 (column k=1).

Programs

  • Mathematica
    nn = 6; B[n_] := QFactorial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}]; zetapolys = Drop[Map[Expand[InterpolatingPolynomial[#, x]] &,Transpose[Table[Table[B[n], {n, 0, nn}] CoefficientList[Series[1/e[-z]^k, {z, 0, nn}], z], {k,1,nn}]]],-1];Table[zetapolys /. x -> i, {i, 0, nn}] // Transpose // Grid

Formula

Sum_{n>=0} T(n,k)/A005329(n) = 1/e(-x)^k, where e(x) = Sum_{n>=0}x^n/A005329(n).

A381930 Irregular triangular array read by rows. T(n,k) is the number of length n words x on {0,1,2} such that I(x) + W_0(x)*W_1(x) + W_0(x)*W_2(x) + W_1(x)*W_2(x) = k where I(x) is the number of inversions in x and W_i(x) is the number of occurrences of the letter i in x for i={0,1,2}, n>=0, 0<=k<=floor(2n^2/3).

Original entry on oeis.org

1, 3, 3, 3, 3, 3, 0, 6, 7, 8, 2, 1, 3, 0, 0, 6, 9, 12, 18, 12, 12, 6, 3, 3, 0, 0, 0, 6, 6, 12, 15, 27, 27, 36, 33, 33, 21, 15, 6, 3, 3, 0, 0, 0, 0, 6, 6, 6, 12, 18, 27, 33, 52, 62, 77, 82, 86, 75, 68, 48, 35, 19, 11, 2, 1
Offset: 0

Author

Geoffrey Critzer, Mar 10 2025

Keywords

Comments

Sum_{k>=0} T(n,k)*2^k = A342245(n).
Sum_{k>=0} T(n,k)*q^k = the number of ordered pairs (S,T) of idempotent n X n matrices over GF(q) such that ST=TS=S.

Examples

			Triangle T(n,k) begins:
  1;
  3;
  3, 3, 3;
  3, 0, 6, 7, 8,  2,  1;
  3, 0, 0, 6, 9, 12, 18, 12, 12,  6,  3;
  3, 0, 0, 0, 6,  6, 12, 15, 27, 27, 36, 33, 33, 21, 15, 6, 3;
  ...
T(3,3) = 7 because we have: {0, 1, 0}, {0, 1, 2}, {0, 2, 0}, {1, 0, 1}, {1, 2, 1}, {2, 0, 2}, {2, 1, 2}.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, j, k) option remember; expand(
         `if`(n=0, z^(i*j+i*k+j*k), b(n-1, i+1, j, k)*z^(j+k)+
          b(n-1, i, j+1, k)*z^k +b(n-1, i, j, k+1)))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$3)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Mar 10 2025
  • Mathematica
    nn = 6; B[n_] := FunctionExpand[QFactorial[n, q]]*q^Binomial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, q] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[e[z]^3, {z, 0, nn}],z]] // Grid

Formula

Sum_{n>=0} Sum_{k>=0} T(n,k)*q^k*x^n/(n_q!*q^binomial(n,2)) = e(x)^3 where e(x) = Sum_{n>=0} x^n/(n_q!*q^binomial(n,2)) where n_q! = Product{i=1..n} (q^n-1)/(q-1).
From Alois P. Heinz, Mar 10 2025: (Start)
Sum_{k>=0} k * T(n,k) = 9 * A027472(n+1).
Sum_{k>=0} (-1)^k * T(n,k) = A056449(n). (End)

A381899 Irregular triangular array read by rows. T(n,k) is the number of length n words x on {0,1} such that I(x) + W(x)*(n-W(x)) = k, where I(x) is the number of inversions in x and W(x) is the number of 1's in x, n >= 0, 0 <= k <= floor(n^2/2).

Original entry on oeis.org

1, 2, 2, 1, 1, 2, 0, 2, 2, 2, 2, 0, 0, 2, 3, 3, 4, 1, 1, 2, 0, 0, 0, 2, 2, 4, 4, 6, 4, 4, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 4, 5, 7, 6, 9, 7, 7, 5, 4, 1, 1, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 4, 4, 8, 6, 10, 12, 14, 12, 14, 10, 10, 6, 4, 2, 2
Offset: 0

Author

Geoffrey Critzer, Mar 09 2025

Keywords

Comments

Sum_{k>=0} T(n,k)*2^k = A132186(n).
Sum_{k>=0} T(n,k)*3^k = A053846(n).
Sum_{k>=0} T(n,k)*q^k = the number of idempotent n X n matrices over GF(q).
It appears that if n is even the n-th row converges to 2,0,0,...,21,13,9,5,4,1,1 which is A226622 reversed, and if n is odd the sequence is twice A226635.
From Alois P. Heinz, Mar 09 2025: (Start)
Sum_{k>=0} k * T(n,k) = 3*A001788(n-1) for n>=1.
Sum_{k>=0} (-1)^k * T(n,k) = A060546(n). (End)

Examples

			Triangle T(n,k) begins:
  1;
  2;
  2, 1, 1;
  2, 0, 2, 2, 2;
  2, 0, 0, 2, 3, 3, 4, 1, 1;
  2, 0, 0, 0, 2, 2, 4, 4, 6, 4, 4, 2, 2;
  ...
T(4,5) = 3 because we have: {0, 1, 0, 0}, {0, 1, 0, 1}, {1, 1, 0, 1}.
		

Crossrefs

Programs

  • Maple
    b:= proc(i, j) option remember; expand(`if`(i+j=0, 1,
         `if`(i=0, 0, b(i-1, j))+`if`(j=0, 0, b(i, j-1)*z^i)))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(
             expand(add(b(n-j, j)*z^(j*(n-j)), j=0..n))):
    seq(T(n), n=0..10);  # Alois P. Heinz, Mar 09 2025
  • Mathematica
    nn = 7; B[n_] := FunctionExpand[QFactorial[n, q]]*q^Binomial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}]; Map[CoefficientList[#, q] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[e[z]^2, {z, 0, nn}],z]]

Formula

Sum_{n>=0} Sum_{k>=0} T(n,k)*q^k*x^n/(n_q!*q^binomial(n,2)) = e(x)^2 where e(x) = Sum_{n>=0} x^n/(n_q!*q^binomial(n,2)) where n_q! = Product{i=1..n} (q^n-1)/(q-1).

A381299 Irregular triangular array read by rows. T(n,k) is the number of ordered set partitions of [n] with exactly k descents, n>=0, 0<=k<=binomial(n,2).

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 4, 1, 8, 12, 18, 18, 12, 6, 1, 16, 32, 60, 84, 100, 92, 76, 48, 24, 8, 1, 32, 80, 176, 300, 448, 572, 650, 658, 596, 478, 334, 206, 102, 40, 10, 1, 64, 192, 480, 944, 1632, 2476, 3428, 4300, 5008, 5372, 5356, 4936, 4220, 3316, 2392, 1556, 904, 456, 188, 60, 12, 1
Offset: 0

Author

Geoffrey Critzer, Feb 19 2025

Keywords

Comments

Let p = ({b_1},{b_2},...,{b_m}) be an ordered set partition of [n] into m blocks for some m, 1<=m<=n. A descent in p is an ordered pair (x,y) in [n]X[n] such that x is in b_i, y is in b_j, iy.
T(n,binomial(n,2)) = 1 (counts the ordered set partition ({n},{n-1},...,{2},{1})).
For n>=1, T(n,0) = 2^(n-1).
Sum_{k>=0} T(n,k)*2^k = A289545(n).
Sum_{k>=0} T(n,k)*3^k = A347841(n).
Sum_{k>=0} T(n,k)*4^k = A347842(n).
Sum_{k>=0} T(n,k)*5^k = A347843(n).
Sum_{k>=0} T(n,k)*6^k = A385408(n).
Sum_{k>=0} T(n,k)*7^k = A347844(n).
Sum_{k>=0} T(n,k)*8^k = A347845(n).
Sum_{k>=0} T(n,k)*9^k = A347846(n).
T(n,k) is the number of preferential arrangements of n labeled elements with exactly k inversions. For example, there 4 preferential rearrangements of length 3 with 1 inversion: 132, 213, 212, 131. - Kyle Celano, Aug 18 2025

Examples

			Triangle T(n,k) begins:
  1;
  1;
  2,  1;
  4,  4,  4,  1;
  8, 12, 18, 18,  12,  6,  1;
 16, 32, 60, 84, 100, 92, 76, 48, 24, 8, 1;
 ...
		

Crossrefs

Columns k=0-2 give: A011782, A001787(n-1) for n>=1, 2*A268586.
Cf. A000670 (row sums), A008302 (the cases where each block has size 1).

Programs

  • Maple
    b:= proc(o, u, t) option remember; expand(`if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2), 0)+add(x^(u+j-1)*b(o-j, u+j-1, 1), j=1..o)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..8);  # Alois P. Heinz, Feb 21 2025
  • Mathematica
    nn = 7; B[n_] := FunctionExpand[QFactorial[n, u]]; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, u] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[1/(1 -(e[z] - 1)), {z, 0, nn}], z]] // Grid

Formula

Sum_{k=0..binomial(n,2)} k * T(n,k) = A240796(n). - Alois P. Heinz, Feb 20 2025
T(n,k) = Sum_{w} 2^(asc(w)), where w runs through the set of permutations with k inversions and asc(w) is the number of ascents of w. - Kyle Celano, Aug 18 2025

A381192 Irregular triangle read by rows. Properly color the vertices of a simple labeled graph on [n] using exactly n colors c_1=0, 0<=k<=binomial(n,2).

Original entry on oeis.org

1, 1, 3, 1, 21, 19, 7, 1, 315, 516, 419, 208, 65, 12, 1, 9765, 24186, 31445, 27488, 17538, 8420, 3050, 816, 153, 18, 1, 615195, 2080323, 3769767, 4754751, 4592847, 3555479, 2257723, 1188595, 519745, 187705, 55237, 12941, 2325, 301, 25, 1
Offset: 0

Author

Geoffrey Critzer, Feb 16 2025

Keywords

Comments

A descent in a labeled directed graph is an edge s->t such that s>t.
T(n,0) = A005329(n).
Sum_{k>=0} T(n,k)*k = A005329(n)*n(n-1)/8.

Examples

			     1;
     1;
     3,     1;
    21,    19,     7,     1;
   315,   516,   419,   208,    65,   12,   1;
  9765, 24186, 31445, 27488, 17538, 8420, 3050, 816, 153, 18, 1;
  ...
		

Crossrefs

CF. A005329, A381058, A011266 (row sums), A381102.

Programs

  • Mathematica
    nn = 6; B[n_] :=FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]] (1 + y)^Binomial[n, 2]; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, u] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[1/(1 - z), {z, 0, nn}], z] /. y -> 1] // Grid