cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A289545 Number of flags in an n-dimensional vector space over GF(2).

Original entry on oeis.org

1, 1, 4, 36, 696, 27808, 2257888, 369572160, 121459776768, 79991977040128, 105466641591287296, 278244130564826548224, 1468496684404408240109568, 15502543140842029367582248960, 327332729703063815298568073396224, 13823536566775628445052117519260598272
Offset: 0

Views

Author

Geoffrey Critzer, Jul 28 2017

Keywords

Crossrefs

Cf. A381299.
Column k=2 of A381426.

Programs

  • Maple
    b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2), 0)+add(2^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..16);  # Alois P. Heinz, Feb 21 2025
  • Mathematica
    nn = 15; eq[z_] :=Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0,
       nn}] CoefficientList[Series[ 1/(1 - (eq[z] - 1)) /. q -> 2, {z, 0, nn}], z]

Formula

a(n) = Sum A005329(n)/( A005329(n_1)*A005329(n_2)*...*A005329(n_k) ) where the sum is over all compositions of n = n_1 + n_2 + ... + n_k.
G.f. a(n)/A005329(n) is the coefficient of x^n in 1/(2 - eq(x)) where eq(x) is the 2-exponential function.
a(n) = Sum_{k=0..binomial(n,2)} 2^k * A381299(n,k). - Alois P. Heinz, Feb 21 2025

A125810 Triangle of q-Bell number coefficients, read by rows that form polynomials in q, giving the eigensequence for the triangle of q-binomial coefficients.

Original entry on oeis.org

1, 1, 2, 4, 1, 8, 4, 3, 16, 12, 13, 8, 3, 32, 32, 42, 38, 33, 15, 10, 1, 64, 80, 120, 133, 145, 121, 98, 60, 37, 15, 4, 128, 192, 320, 408, 507, 526, 544, 457, 391, 281, 195, 104, 61, 20, 6, 256, 448, 816, 1160, 1585, 1875, 2189, 2259, 2256, 2066, 1819, 1450, 1133, 777, 506, 300, 158, 65, 25, 4
Offset: 0

Views

Author

Paul D. Hanna, Dec 10 2006

Keywords

Comments

Row n evaluated at sample values of q are as follows:
R_n(q=1) = A000110(n) (Bell numbers);
R_n(q=-1) = A080107(n) (fixed points of permutation of SetPartitions);
R_n(q=2) = A125812; R_n(q=3) = A125813; R_n(q=4) = A125814; R_n(q=5) = A125815.
T(n,k) is the number of set partitions of [n] having exactly k inversions. T(5,4)=3: 145|23, 145|2|3, 15|24|3; T(6,6) = 10: 1456|23, 156|234, 156|23|4, 1456|2|3, 146|25|3, 16|245|3, 156|2|34, 16|25|34, 156|2|3|4, 16|25|3|4. - Alois P. Heinz, Apr 03 2016

Examples

			Row g.f.s B_q(n) are polynomials in q generated by:
B_q(n) = Sum_{j=0..n-1} B_q(j) * C_q(n-1,j) for n>0 with B_q(0)=1
where the triangle of q-binomial coefficients C_q(n,k) begins:
1;
1, 1;
1, 1 + q, 1;
1, 1 + q + q^2, 1 + q + q^2, 1;
1, 1 + q + q^2 + q^3, 1 + q + 2*q^2 + q^3 + q^4, 1 + q + q^2 + q^3, 1;
The initial q-Bell coefficients in B_q(n) are:
B_q(0) = 1; B_q(1) = 1; B_q(2) = 2;
B_q(3) = 4 + q;
B_q(4) = 8 + 4*q + 3*q^2;
B_q(5) = 16 + 12*q + 13*q^2 + 8*q^3 + 3*q^4;
B_q(6) = 32 + 32*q + 42*q^2 + 38*q^3 + 33*q^4 + 15*q^5 + 10*q^6 + q^7.
Number of terms in row n is given by A125811, which starts:
1,1,1,2,3,5,8,11,15,20,26,32,39,47,56,66,76,87,99,112,126,141,156,...
Triangle begins:
    1;
    1;
    2;
    4,   1;
    8,   4,   3;
   16,  12,  13,    8,    3;
   32,  32,  42,   38,   33,   15,   10,    1;
   64,  80, 120,  133,  145,  121,   98,   60,   37,   15,    4;
  128, 192, 320,  408,  507,  526,  544,  457,  391,  281,  195,  104,   61,  20, 6;
  256, 448, 816, 1160, 1585, 1875, 2189, 2259, 2256, 2066, 1819, 1450, 1133, 777, 506, 300, 158, 65, 25, 4;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(o, u, t) option remember; expand(
         `if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2), 0)+add(x^(u+j-1)*
            b(o-j, u+j-1, min(2, t+1)), j=`if`(t=0, 1, 1..o))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Feb 21 2025
  • Mathematica
    QB[n_, q_] := QB[n, q] = Sum[QB[j, q] QBinomial[n-1, j, q], {j, 0, n-1}] // FunctionExpand // Simplify; QB[0, q_]=1; QB[1, q_]=1; Table[ CoefficientList[QB[n, q], q], {n, 0, 9}] // Flatten (* Jean-François Alcover, Feb 29 2016 *)
  • PARI
    /* q-Binomial coefficients: */
    {C_q(n, k) = if(n
    				

Formula

T(n,0) = 2^(n-1) for n>0. G.f. of row n is a polynomial in q, B_q(n), that is generated by the recurrence: B_q(n) = Sum_{j=0..n-1} B_q(j) * C_q(n-1,j) for n>0, with B_q(0)=1. The q-binomial coefficient (also called Gaussian binomial coefficient) is given by: C_q(n,k) = [Product_{i=n-k+1..n} (1-q^i)]/[Product_{j=1..k} (1-q^j)].
Sum_{k>0} k * T(n,k) = A264082(n). - Alois P. Heinz, Apr 03 2016

A381426 A(n,k) is the sum over all ordered partitions of [n] of k^j for an ordered partition with j inversions; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 13, 8, 1, 1, 5, 36, 75, 16, 1, 1, 6, 79, 696, 541, 32, 1, 1, 7, 148, 3851, 27808, 4683, 64, 1, 1, 8, 249, 14808, 567733, 2257888, 47293, 128, 1, 1, 9, 388, 44643, 5942608, 251790113, 369572160, 545835, 256, 1, 1, 10, 571, 113480, 40065301, 9546508128, 335313799327, 121459776768, 7087261, 512
Offset: 0

Views

Author

Alois P. Heinz, Feb 23 2025

Keywords

Examples

			Square array A(n,k) begins:
   1,    1,       1,         1,          1,            1,             1, ...
   1,    1,       1,         1,          1,            1,             1, ...
   2,    3,       4,         5,          6,            7,             8, ...
   4,   13,      36,        79,        148,          249,           388, ...
   8,   75,     696,      3851,      14808,        44643,        113480, ...
  16,  541,   27808,    567733,    5942608,     40065301,     199246816, ...
  32, 4683, 2257888, 251790113, 9546508128, 179833594207, 2099255895008, ...
		

Crossrefs

Main diagonal gives A381427.

Programs

  • Maple
    b:= proc(o, u, t, k) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2, k), 0)+add(k^(u+j-1)*b(o-j, u+j-1, 1, k), j=1..o))
        end:
    A:= (n, k)-> b(n, 0$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[o_, u_, t_, k_] := b[o, u, t, k] = If[u + o == 0, 1, If[t == 1, b[u + o, 0, 0, k], 0] + Sum[If[k == u + j - 1 == 0, 1, k^(u + j - 1)]*b[o - j, u + j - 1, 1, k], {j, 1, o}]];
    A[n_, k_] := b[n, 0, 0, k];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Apr 19 2025, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..binomial(n,2)} k^j * A381299(n,j).

A240796 Total number of occurrences of the pattern 1<2 in all preferential arrangements (or ordered partitions) of n elements.

Original entry on oeis.org

0, 1, 15, 186, 2330, 31065, 447405, 6979588, 117745668, 2141106795, 41810587775, 873474855726, 19451904450654, 460209050303821, 11531197020389025, 305122289460210120, 8503747639606509128, 249020038061419770783, 7645072502094118876755, 245564189847880300238290
Offset: 1

Views

Author

N. J. A. Sloane, Apr 13 2014

Keywords

Comments

There are A000670(n) preferential arrangements of n elements - see A000670, A240763.
The number that avoid the pattern 1<2 is 2^(n-1).
The total number of occurrences of the pattern 1<2 in all permutations on n elements is (n-1)*(n-1)! (cf. A010027, A001563).

Examples

			The 13 preferential arrangements on 3 points and the number of times the pattern 1<2 occurs are:
1<2<3, 3
1<3<2, 2
2<1<3, 2
2<3<1, 1
3<1<2, 1
3<2<1, 0
1=2<3, 2
1=3<2, 1
2=3<1, 0
1<2=3, 2
2<1=3, 1
3<1=2, 0
1=2=3, 0,
for a total of a(3) = 15.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, [1, 0], add((p-> p+
          [0, p[1]*j*t/2])(b(n-j, t+j))*binomial(n, j), j=1..n))
        end:
    a:= n-> b(n, 0)[2]:
    seq(a(n), n=1..25);  # Alois P. Heinz, Dec 08 2014
  • Mathematica
    b[n_, t_] := b[n, t] = If[n == 0, {1, 0}, Sum[Function[{p}, p + {0, p[[1]]*j*t/2}][b[n - j, t + j]]*Binomial[n, j], {j, 1, n}]]; a[n_] := b[n, 0][[2]]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Jun 08 2015, after Alois P. Heinz *)

Formula

a(n) ~ n! * n^2 / (8 * (log(2))^(n+1)). - Vaclav Kotesovec, May 03 2015
a(n) = Sum_{k=0..binomial(n,2)} k * A381299(n,k). - Alois P. Heinz, Feb 22 2025

Extensions

a(8)-a(20) from Alois P. Heinz, Dec 08 2014

A381529 T(n,k) is the number of permutations of [n] having exactly k pairs of integers i=0, 0<=k<=A125811(n)-1, read by rows.

Original entry on oeis.org

1, 1, 2, 5, 1, 15, 5, 4, 54, 21, 24, 16, 5, 235, 89, 118, 112, 101, 35, 28, 2, 1237, 408, 577, 633, 719, 585, 402, 239, 167, 59, 14, 7790, 2106, 3023, 3529, 4410, 4463, 4600, 3012, 2789, 1933, 1438, 629, 442, 122, 34, 57581, 12529, 17693, 20980, 27208, 30064, 35359, 33332, 28137, 24970, 22850, 17148, 14272, 8645, 5639, 3684, 1809, 664, 282, 34
Offset: 0

Views

Author

Alois P. Heinz, Feb 26 2025

Keywords

Examples

			T(4,0) = 15: (1)(2)(3)(4), (1,2)(3)(4), (1)(2,3)(4), (1)(2)(3,4), (1,2)(3,4), (1,2,3)(4), (1,3,2)(4), (1)(2,3,4), (1)(2,4,3), (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,3,4,2), (1,4,2,3), (1,4,3,2).
T(4,1) = 5: (1)(2,4)(3), (1,2,4)(3), (1,4,2)(3), (1,3)(2)(4), (1,3)(2,4).
T(4,2) = 4: (1,4)(2)(3), (1,4)(2,3), (1,3,4)(2), (1,4,3)(2).
Triangle T(n,k) begins:
     1;
     1;
     2;
     5,   1;
    15,   5,   4;
    54,  21,  24,  16,   5;
   235,  89, 118, 112, 101,  35,  28,   2;
  1237, 408, 577, 633, 719, 585, 402, 239, 167, 59, 14;
  ...
		

Crossrefs

Columns k=0-1 give: A051295, A381539.
Row sums give A000142.
Row lengths give A125811.
Last elements of rows give A381531.
Main diagonal gives A381545.
Cf. A008302, A125810 (similar for set partitions), A126673, A381299 (similar for ordered set partitions).

Programs

  • Maple
    b:= proc(o, u, t) option remember; expand(`if`(u+o=0, max(0, t-1)!,
         `if`(t>0, b(u+o, 0$2)*(t-1)!, 0)+add(x^(u+j-1)*
            b(o-j, u+j-1, t+1), j=`if`(t=0, 1, 1..o))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..10);

Formula

Sum_{k>=1} k * T(n,k) = A126673(n)/2.

A347841 a(n) is the number of (strict) chains of subspaces with ends 0 and (F_3)^n.

Original entry on oeis.org

1, 1, 5, 79, 3851, 567733, 251790113, 335313799327, 1340040415899803, 16067553466179577453, 577986341168068075687337, 62375143109859674070751394743, 20194282336027244435564571244298243, 19614041602745899032342581715038226919285
Offset: 0

Views

Author

Álvar Ibeas, Sep 15 2021

Keywords

Examples

			a(3) = 79 = 1 * 1 + 13 * 2 + 52 * 1, counting:
the unrefined chain 0 < (F_3)^3;
13 chains 0 < V < (F_3)^3, with dim(V) = 1; another
13 chains 0 < V < (F_3)^3, with dim(V) = 2; and
52 chains 0 < V_1 < V_2 < (F_3)^3.
		

Crossrefs

Column k=3 of A381426.

Programs

  • Maple
    b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2), 0)+add(3^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..14);  # Alois P. Heinz, Feb 21 2025

Formula

a(n) = Sum_{L partition of n} A347486(n, L) * A036038(len(L), sig(L)), where sig(L) is the partition composed by the part multiplicities of L.
a(n) = Sum_{k=0..binomial(n,2)} 3^k * A381299(n,k). - Alois P. Heinz, Feb 21 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 21 2025

A347842 a(n) is the number of (strict) chains of subspaces with ends 0 and (F_4)^n.

Original entry on oeis.org

1, 1, 6, 148, 14808, 5942608, 9546508128, 61355108818240, 1577381936031968640, 162213856617581098030336, 66726795842176170072717129216, 109792555585903911536355551233758208, 722612693482570097701467493432061846673408, 19023844570798442009810731239392846416136188284928
Offset: 0

Views

Author

Álvar Ibeas, Sep 15 2021

Keywords

Examples

			a(3) = 148 = 1 * 1 + 21 * 2 + 105 * 1, counting:
the unrefined chain 0 < (F_4)^3;
21 chains 0 < V < (F_4)^3, with dim(V) = 1; another
21 chains 0 < V < (F_4)^3, with dim(V) = 2; and
105 chains 0 < V_1 < V_2 < (F_4)^3.
		

Crossrefs

Column k=4 of A381426.

Programs

  • Maple
    b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2), 0)+add(4^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..14);  # Alois P. Heinz, Feb 21 2025

Formula

a(n) = Sum_{L partition of n} A347487(n, L) * A036038(len(L), sig(L)), where sig(L) is the partition composed by the part multiplicities of L.
a(n) = Sum_{k=0..binomial(n,2)} 4^k * A381299(n,k). - Alois P. Heinz, Feb 21 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 21 2025

A347843 a(n) is the number of (strict) chains of subspaces with ends 0 and (F_5)^n.

Original entry on oeis.org

1, 1, 7, 249, 44643, 40065301, 179833594207, 4036127700341649, 452932494435315724443, 254139954749268142006053901, 712988623255130761190069046824407, 10001434425838325885839124865408303623049, 701474672607858244757589244286886103482442884243
Offset: 0

Views

Author

Álvar Ibeas, Sep 15 2021

Keywords

Examples

			a(3) = 249 = 1 * 1 + 31 * 2 + 186 * 1, counting:
the unrefined chain 0 < (F_5)^3;
31 chains 0 < V < (F_5)^3, with dim(V) = 1; another
31 chains 0 < V < (F_5)^3, with dim(V) = 2; and
186 chains 0 < V_1 < V_2 < (F_5)^3.
		

Crossrefs

Column k=5 of A381426.

Programs

  • Maple
    b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2), 0)+add(5^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..16);  # Alois P. Heinz, Feb 21 2025

Formula

a(n) = Sum_{L partition of n} A347488(n, L) * A036038(len(L), sig(L)), where sig(L) is the partition composed by the part multiplicities of L.
a(n) = Sum_{k=0..binomial(n,2)} 5^k * A381299(n,k). - Alois P. Heinz, Feb 21 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 21 2025

A347846 a(n) is the number of (strict) chains of subspaces with ends 0 and (F_9)^n.

Original entry on oeis.org

1, 1, 11, 1093, 979163, 7895396653, 572984959186643, 374244678702477629605, 2199939020346263706461674955, 116387990444553949414146511586296381, 55417662962428710787068813831544886356769891, 237482030708312867514661156730660313316831290472695733
Offset: 0

Views

Author

Álvar Ibeas, Sep 15 2021

Keywords

Examples

			a(3) = 1093 = 1 * 1 + 91 * 2 + 910 * 1, counting:
the unrefined chain 0 < (F_9)^3;
91 chains 0 < V < (F_9)^3, with dim(V) = 1; another
91 chains 0 < V < (F_9)^3, with dim(V) = 2; and
910 chains 0 < V_1 < V_2 < (F_9)^3.
		

Crossrefs

Column k=9 of A381426.

Formula

a(n) = Sum_{L partition of n} A347491(n, L) * A036038(len(L), sig(L)), where sig(L) is the partition composed by the part multiplicities of L.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 25 2025

A381427 Sum over all ordered partitions of [n] of n^j for an ordered partition with j inversions.

Original entry on oeis.org

1, 1, 4, 79, 14808, 40065301, 2099255895008, 2651651342949844915, 96254339565438079064819328, 116387990444553949414146511586296381, 5327195120249449992420082364255283659438679552, 10333056290045508772052838892223597279253890797441054043823
Offset: 0

Views

Author

Alois P. Heinz, Feb 23 2025

Keywords

Crossrefs

Main diagonal of A381426.

Programs

  • Maple
    b:= proc(o, u, t, k) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2, k), 0)+add(k^(u+j-1)*b(o-j, u+j-1, 1, k), j=1..o))
        end:
    a:= n-> b(n, 0$2, n):
    seq(a(n), n=0..11);

Formula

a(n) = Sum_{j=0..binomial(n,2)} n^j * A381299(n,j).
a(n) = A381426(n,n).
a(n) mod n = A062173(n) for n>=1.
a(n) mod 2 = A135528(n+1).
Showing 1-10 of 11 results. Next