cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A381299 Irregular triangular array read by rows. T(n,k) is the number of ordered set partitions of [n] with exactly k descents, n>=0, 0<=k<=binomial(n,2).

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 4, 1, 8, 12, 18, 18, 12, 6, 1, 16, 32, 60, 84, 100, 92, 76, 48, 24, 8, 1, 32, 80, 176, 300, 448, 572, 650, 658, 596, 478, 334, 206, 102, 40, 10, 1, 64, 192, 480, 944, 1632, 2476, 3428, 4300, 5008, 5372, 5356, 4936, 4220, 3316, 2392, 1556, 904, 456, 188, 60, 12, 1
Offset: 0

Views

Author

Geoffrey Critzer, Feb 19 2025

Keywords

Comments

Let p = ({b_1},{b_2},...,{b_m}) be an ordered set partition of [n] into m blocks for some m, 1<=m<=n. A descent in p is an ordered pair (x,y) in [n]X[n] such that x is in b_i, y is in b_j, iy.
T(n,binomial(n,2)) = 1 (counts the ordered set partition ({n},{n-1},...,{2},{1})).
For n>=1, T(n,0) = 2^(n-1).
Sum_{k>=0} T(n,k)*2^k = A289545(n).
Sum_{k>=0} T(n,k)*3^k = A347841(n).
Sum_{k>=0} T(n,k)*4^k = A347842(n).
Sum_{k>=0} T(n,k)*5^k = A347843(n).
Sum_{k>=0} T(n,k)*6^k = A385408(n).
Sum_{k>=0} T(n,k)*7^k = A347844(n).
Sum_{k>=0} T(n,k)*8^k = A347845(n).
Sum_{k>=0} T(n,k)*9^k = A347846(n).
T(n,k) is the number of preferential arrangements of n labeled elements with exactly k inversions. For example, there 4 preferential rearrangements of length 3 with 1 inversion: 132, 213, 212, 131. - Kyle Celano, Aug 18 2025

Examples

			Triangle T(n,k) begins:
  1;
  1;
  2,  1;
  4,  4,  4,  1;
  8, 12, 18, 18,  12,  6,  1;
 16, 32, 60, 84, 100, 92, 76, 48, 24, 8, 1;
 ...
		

Crossrefs

Columns k=0-2 give: A011782, A001787(n-1) for n>=1, 2*A268586.
Cf. A000670 (row sums), A008302 (the cases where each block has size 1).

Programs

  • Maple
    b:= proc(o, u, t) option remember; expand(`if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2), 0)+add(x^(u+j-1)*b(o-j, u+j-1, 1), j=1..o)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..8);  # Alois P. Heinz, Feb 21 2025
  • Mathematica
    nn = 7; B[n_] := FunctionExpand[QFactorial[n, u]]; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, u] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[1/(1 -(e[z] - 1)), {z, 0, nn}], z]] // Grid

Formula

Sum_{k=0..binomial(n,2)} k * T(n,k) = A240796(n). - Alois P. Heinz, Feb 20 2025
T(n,k) = Sum_{w} 2^(asc(w)), where w runs through the set of permutations with k inversions and asc(w) is the number of ascents of w. - Kyle Celano, Aug 18 2025

A381426 A(n,k) is the sum over all ordered partitions of [n] of k^j for an ordered partition with j inversions; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 13, 8, 1, 1, 5, 36, 75, 16, 1, 1, 6, 79, 696, 541, 32, 1, 1, 7, 148, 3851, 27808, 4683, 64, 1, 1, 8, 249, 14808, 567733, 2257888, 47293, 128, 1, 1, 9, 388, 44643, 5942608, 251790113, 369572160, 545835, 256, 1, 1, 10, 571, 113480, 40065301, 9546508128, 335313799327, 121459776768, 7087261, 512
Offset: 0

Views

Author

Alois P. Heinz, Feb 23 2025

Keywords

Examples

			Square array A(n,k) begins:
   1,    1,       1,         1,          1,            1,             1, ...
   1,    1,       1,         1,          1,            1,             1, ...
   2,    3,       4,         5,          6,            7,             8, ...
   4,   13,      36,        79,        148,          249,           388, ...
   8,   75,     696,      3851,      14808,        44643,        113480, ...
  16,  541,   27808,    567733,    5942608,     40065301,     199246816, ...
  32, 4683, 2257888, 251790113, 9546508128, 179833594207, 2099255895008, ...
		

Crossrefs

Main diagonal gives A381427.

Programs

  • Maple
    b:= proc(o, u, t, k) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2, k), 0)+add(k^(u+j-1)*b(o-j, u+j-1, 1, k), j=1..o))
        end:
    A:= (n, k)-> b(n, 0$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[o_, u_, t_, k_] := b[o, u, t, k] = If[u + o == 0, 1, If[t == 1, b[u + o, 0, 0, k], 0] + Sum[If[k == u + j - 1 == 0, 1, k^(u + j - 1)]*b[o - j, u + j - 1, 1, k], {j, 1, o}]];
    A[n_, k_] := b[n, 0, 0, k];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Apr 19 2025, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..binomial(n,2)} k^j * A381299(n,j).

A347841 a(n) is the number of (strict) chains of subspaces with ends 0 and (F_3)^n.

Original entry on oeis.org

1, 1, 5, 79, 3851, 567733, 251790113, 335313799327, 1340040415899803, 16067553466179577453, 577986341168068075687337, 62375143109859674070751394743, 20194282336027244435564571244298243, 19614041602745899032342581715038226919285
Offset: 0

Views

Author

Álvar Ibeas, Sep 15 2021

Keywords

Examples

			a(3) = 79 = 1 * 1 + 13 * 2 + 52 * 1, counting:
the unrefined chain 0 < (F_3)^3;
13 chains 0 < V < (F_3)^3, with dim(V) = 1; another
13 chains 0 < V < (F_3)^3, with dim(V) = 2; and
52 chains 0 < V_1 < V_2 < (F_3)^3.
		

Crossrefs

Column k=3 of A381426.

Programs

  • Maple
    b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2), 0)+add(3^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..14);  # Alois P. Heinz, Feb 21 2025

Formula

a(n) = Sum_{L partition of n} A347486(n, L) * A036038(len(L), sig(L)), where sig(L) is the partition composed by the part multiplicities of L.
a(n) = Sum_{k=0..binomial(n,2)} 3^k * A381299(n,k). - Alois P. Heinz, Feb 21 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 21 2025

A347842 a(n) is the number of (strict) chains of subspaces with ends 0 and (F_4)^n.

Original entry on oeis.org

1, 1, 6, 148, 14808, 5942608, 9546508128, 61355108818240, 1577381936031968640, 162213856617581098030336, 66726795842176170072717129216, 109792555585903911536355551233758208, 722612693482570097701467493432061846673408, 19023844570798442009810731239392846416136188284928
Offset: 0

Views

Author

Álvar Ibeas, Sep 15 2021

Keywords

Examples

			a(3) = 148 = 1 * 1 + 21 * 2 + 105 * 1, counting:
the unrefined chain 0 < (F_4)^3;
21 chains 0 < V < (F_4)^3, with dim(V) = 1; another
21 chains 0 < V < (F_4)^3, with dim(V) = 2; and
105 chains 0 < V_1 < V_2 < (F_4)^3.
		

Crossrefs

Column k=4 of A381426.

Programs

  • Maple
    b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2), 0)+add(4^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..14);  # Alois P. Heinz, Feb 21 2025

Formula

a(n) = Sum_{L partition of n} A347487(n, L) * A036038(len(L), sig(L)), where sig(L) is the partition composed by the part multiplicities of L.
a(n) = Sum_{k=0..binomial(n,2)} 4^k * A381299(n,k). - Alois P. Heinz, Feb 21 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 21 2025

A347843 a(n) is the number of (strict) chains of subspaces with ends 0 and (F_5)^n.

Original entry on oeis.org

1, 1, 7, 249, 44643, 40065301, 179833594207, 4036127700341649, 452932494435315724443, 254139954749268142006053901, 712988623255130761190069046824407, 10001434425838325885839124865408303623049, 701474672607858244757589244286886103482442884243
Offset: 0

Views

Author

Álvar Ibeas, Sep 15 2021

Keywords

Examples

			a(3) = 249 = 1 * 1 + 31 * 2 + 186 * 1, counting:
the unrefined chain 0 < (F_5)^3;
31 chains 0 < V < (F_5)^3, with dim(V) = 1; another
31 chains 0 < V < (F_5)^3, with dim(V) = 2; and
186 chains 0 < V_1 < V_2 < (F_5)^3.
		

Crossrefs

Column k=5 of A381426.

Programs

  • Maple
    b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2), 0)+add(5^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..16);  # Alois P. Heinz, Feb 21 2025

Formula

a(n) = Sum_{L partition of n} A347488(n, L) * A036038(len(L), sig(L)), where sig(L) is the partition composed by the part multiplicities of L.
a(n) = Sum_{k=0..binomial(n,2)} 5^k * A381299(n,k). - Alois P. Heinz, Feb 21 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 21 2025

A347844 a(n) is the number of (strict) chains of subspaces with ends 0 and (F_7)^n.

Original entry on oeis.org

1, 9, 571, 254451, 793949053, 17342194001493, 2651651342949844915, 2838097493373982791359403, 21263575996354049430406053548413, 1115175826296921591259255638404605916661, 409400558616252174531470888061523725583206190339
Offset: 1

Views

Author

Álvar Ibeas, Sep 15 2021

Keywords

Examples

			a(3) = 571 = 1 * 1 + 57 * 2 + 456 * 1, counting:
the unrefined chain 0 < (F_7)^3;
57 chains 0 < V < (F_7)^3, with dim(V) = 1; another
57 chains 0 < V < (F_7)^3, with dim(V) = 2; and
456 chains 0 < V_1 < V_2 < (F_7)^3.
		

Crossrefs

Column k=7 of A381426.

Formula

a(n) = Sum_{L partition of n} A347489(n, L) * A036038(len(L), sig(L)), where sig(L) is the partition composed by the part multiplicities of L.

A347845 a(n) is the number of (strict) chains of subspaces with ends 0 and (F_8)^n.

Original entry on oeis.org

1, 1, 10, 804, 518376, 2674194448, 110368339035808, 36440751353074277952, 96254339565438079064819328, 2033964285682509941820879401890048, 343839935881726495233403720783311789640192, 465006794599984581603302662503095770372066384585728
Offset: 0

Views

Author

Álvar Ibeas, Sep 15 2021

Keywords

Examples

			a(3) = 804 = 1 * 1 + 73 * 2 + 657 * 1, counting:
the unrefined chain 0 < (F_8)^3;
73 chains 0 < V < (F_8)^3, with dim(V) = 1; another
73 chains 0 < V < (F_8)^3, with dim(V) = 2; and
657 chains 0 < V_1 < V_2 < (F_8)^3.
		

Crossrefs

Column k=8 of A381426.

Formula

a(n) = Sum_{L partition of n} A347490(n, L) * A036038(len(L), sig(L)), where sig(L) is the partition composed by the part multiplicities of L.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 25 2025

A347846 a(n) is the number of (strict) chains of subspaces with ends 0 and (F_9)^n.

Original entry on oeis.org

1, 1, 11, 1093, 979163, 7895396653, 572984959186643, 374244678702477629605, 2199939020346263706461674955, 116387990444553949414146511586296381, 55417662962428710787068813831544886356769891, 237482030708312867514661156730660313316831290472695733
Offset: 0

Views

Author

Álvar Ibeas, Sep 15 2021

Keywords

Examples

			a(3) = 1093 = 1 * 1 + 91 * 2 + 910 * 1, counting:
the unrefined chain 0 < (F_9)^3;
91 chains 0 < V < (F_9)^3, with dim(V) = 1; another
91 chains 0 < V < (F_9)^3, with dim(V) = 2; and
910 chains 0 < V_1 < V_2 < (F_9)^3.
		

Crossrefs

Column k=9 of A381426.

Formula

a(n) = Sum_{L partition of n} A347491(n, L) * A036038(len(L), sig(L)), where sig(L) is the partition composed by the part multiplicities of L.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 25 2025

A289546 Triangle read by rows. T(n,k) is the number of flags in an n dimensional vector space over GF(2) that have length exactly k, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 14, 21, 0, 1, 65, 315, 315, 0, 1, 372, 4650, 13020, 9765, 0, 1, 2823, 87234, 527310, 1025325, 615195, 0, 1, 29210, 2291715, 27448764, 105413175, 156259530, 78129765, 0, 1, 417197, 88508205, 2043137265, 14019952275, 38897461575, 46487210175, 19923090075
Offset: 0

Views

Author

Geoffrey Critzer, Jul 28 2017

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,    3;
  0, 1,   14,    21;
  0, 1,   65,   315,    315;
  0, 1,  372,  4650,  13020,    9765;
  0, 1, 2823, 87234, 527310, 1025325, 615195;
		

Crossrefs

Cf. A005329 (main diagonal), A289545 (row sums).

Programs

  • Mathematica
    nn = 8; eq[z_] := Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];Table[Take[(Table[ FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0,  nn}] CoefficientList[Series[ 1/(1 - u (eq[z] - 1)) /. q -> 2, {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}] // Grid

Formula

T(n,k)/A005329(n) is the coefficient of y^k*x^n in 1/(1 - y (eq(x) - 1)) where eq(x) is the q-exponential function.

A293844 Number of chains in the partially ordered (by subspace inclusion) set of all subspaces of the vector space GF(2)^n.

Original entry on oeis.org

1, 3, 15, 143, 2783, 111231, 9031551, 1478288639, 485839107071, 319967908160511, 421866566365149183, 1112976522259306192895, 5873986737617632960438271, 62010172563368117470328995839, 1309330918812255261194272293584895, 55294146267102513780208470077042393087
Offset: 0

Views

Author

Geoffrey Critzer, Oct 17 2017

Keywords

Crossrefs

Row sums of A293845.

Programs

  • Mathematica
    nn = 16; eq[z_] := Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0, nn}] CoefficientList[Series[ eq[z]^2/(1 - (eq[z] - 1)) /. q -> 2, {z, 0, nn}], z]

Formula

a(n)/A005329(n) is the coefficient of x^n in eq(x)^2/(2 - eq(x)) where eq(x) is the q-exponential function.
Showing 1-10 of 14 results. Next