A381299
Irregular triangular array read by rows. T(n,k) is the number of ordered set partitions of [n] with exactly k descents, n>=0, 0<=k<=binomial(n,2).
Original entry on oeis.org
1, 1, 2, 1, 4, 4, 4, 1, 8, 12, 18, 18, 12, 6, 1, 16, 32, 60, 84, 100, 92, 76, 48, 24, 8, 1, 32, 80, 176, 300, 448, 572, 650, 658, 596, 478, 334, 206, 102, 40, 10, 1, 64, 192, 480, 944, 1632, 2476, 3428, 4300, 5008, 5372, 5356, 4936, 4220, 3316, 2392, 1556, 904, 456, 188, 60, 12, 1
Offset: 0
Triangle T(n,k) begins:
1;
1;
2, 1;
4, 4, 4, 1;
8, 12, 18, 18, 12, 6, 1;
16, 32, 60, 84, 100, 92, 76, 48, 24, 8, 1;
...
- Alois P. Heinz, Rows n = 0..50, flattened
- Kassie Archer, Ira M. Gessel, Christina Graves, and Xuming Liang, Counting acyclic and strong digraphs by descents, arXiv:1909.01550 [math.CO], 2019-2020.
- Kyle Celano, Jennifer Elder, Kimberly P. Hadaway, Pamela E. Harris, Amanda Priestley, and Gabe Udell, Inversions in parking functions, arXiv:2508.11587 [math.CO], 2025. See Theorem 1.
Cf.
A000670 (row sums),
A008302 (the cases where each block has size 1).
Cf.
A125810,
A161680,
A240796,
A289545,
A347841,
A347842,
A347843,
A347844,
A347845,
A347846,
A385408.
-
b:= proc(o, u, t) option remember; expand(`if`(u+o=0, 1, `if`(t=1,
b(u+o, 0$2), 0)+add(x^(u+j-1)*b(o-j, u+j-1, 1), j=1..o)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
seq(T(n), n=0..8); # Alois P. Heinz, Feb 21 2025
-
nn = 7; B[n_] := FunctionExpand[QFactorial[n, u]]; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, u] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[1/(1 -(e[z] - 1)), {z, 0, nn}], z]] // Grid
A381426
A(n,k) is the sum over all ordered partitions of [n] of k^j for an ordered partition with j inversions; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 13, 8, 1, 1, 5, 36, 75, 16, 1, 1, 6, 79, 696, 541, 32, 1, 1, 7, 148, 3851, 27808, 4683, 64, 1, 1, 8, 249, 14808, 567733, 2257888, 47293, 128, 1, 1, 9, 388, 44643, 5942608, 251790113, 369572160, 545835, 256, 1, 1, 10, 571, 113480, 40065301, 9546508128, 335313799327, 121459776768, 7087261, 512
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
2, 3, 4, 5, 6, 7, 8, ...
4, 13, 36, 79, 148, 249, 388, ...
8, 75, 696, 3851, 14808, 44643, 113480, ...
16, 541, 27808, 567733, 5942608, 40065301, 199246816, ...
32, 4683, 2257888, 251790113, 9546508128, 179833594207, 2099255895008, ...
-
b:= proc(o, u, t, k) option remember; `if`(u+o=0, 1, `if`(t=1,
b(u+o, 0$2, k), 0)+add(k^(u+j-1)*b(o-j, u+j-1, 1, k), j=1..o))
end:
A:= (n, k)-> b(n, 0$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[o_, u_, t_, k_] := b[o, u, t, k] = If[u + o == 0, 1, If[t == 1, b[u + o, 0, 0, k], 0] + Sum[If[k == u + j - 1 == 0, 1, k^(u + j - 1)]*b[o - j, u + j - 1, 1, k], {j, 1, o}]];
A[n_, k_] := b[n, 0, 0, k];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Apr 19 2025, after Alois P. Heinz *)
A347841
a(n) is the number of (strict) chains of subspaces with ends 0 and (F_3)^n.
Original entry on oeis.org
1, 1, 5, 79, 3851, 567733, 251790113, 335313799327, 1340040415899803, 16067553466179577453, 577986341168068075687337, 62375143109859674070751394743, 20194282336027244435564571244298243, 19614041602745899032342581715038226919285
Offset: 0
a(3) = 79 = 1 * 1 + 13 * 2 + 52 * 1, counting:
the unrefined chain 0 < (F_3)^3;
13 chains 0 < V < (F_3)^3, with dim(V) = 1; another
13 chains 0 < V < (F_3)^3, with dim(V) = 2; and
52 chains 0 < V_1 < V_2 < (F_3)^3.
-
b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
b(u+o, 0$2), 0)+add(3^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..14); # Alois P. Heinz, Feb 21 2025
A347842
a(n) is the number of (strict) chains of subspaces with ends 0 and (F_4)^n.
Original entry on oeis.org
1, 1, 6, 148, 14808, 5942608, 9546508128, 61355108818240, 1577381936031968640, 162213856617581098030336, 66726795842176170072717129216, 109792555585903911536355551233758208, 722612693482570097701467493432061846673408, 19023844570798442009810731239392846416136188284928
Offset: 0
a(3) = 148 = 1 * 1 + 21 * 2 + 105 * 1, counting:
the unrefined chain 0 < (F_4)^3;
21 chains 0 < V < (F_4)^3, with dim(V) = 1; another
21 chains 0 < V < (F_4)^3, with dim(V) = 2; and
105 chains 0 < V_1 < V_2 < (F_4)^3.
-
b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
b(u+o, 0$2), 0)+add(4^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..14); # Alois P. Heinz, Feb 21 2025
A347843
a(n) is the number of (strict) chains of subspaces with ends 0 and (F_5)^n.
Original entry on oeis.org
1, 1, 7, 249, 44643, 40065301, 179833594207, 4036127700341649, 452932494435315724443, 254139954749268142006053901, 712988623255130761190069046824407, 10001434425838325885839124865408303623049, 701474672607858244757589244286886103482442884243
Offset: 0
a(3) = 249 = 1 * 1 + 31 * 2 + 186 * 1, counting:
the unrefined chain 0 < (F_5)^3;
31 chains 0 < V < (F_5)^3, with dim(V) = 1; another
31 chains 0 < V < (F_5)^3, with dim(V) = 2; and
186 chains 0 < V_1 < V_2 < (F_5)^3.
-
b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
b(u+o, 0$2), 0)+add(5^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..16); # Alois P. Heinz, Feb 21 2025
A347844
a(n) is the number of (strict) chains of subspaces with ends 0 and (F_7)^n.
Original entry on oeis.org
1, 9, 571, 254451, 793949053, 17342194001493, 2651651342949844915, 2838097493373982791359403, 21263575996354049430406053548413, 1115175826296921591259255638404605916661, 409400558616252174531470888061523725583206190339
Offset: 1
a(3) = 571 = 1 * 1 + 57 * 2 + 456 * 1, counting:
the unrefined chain 0 < (F_7)^3;
57 chains 0 < V < (F_7)^3, with dim(V) = 1; another
57 chains 0 < V < (F_7)^3, with dim(V) = 2; and
456 chains 0 < V_1 < V_2 < (F_7)^3.
A347845
a(n) is the number of (strict) chains of subspaces with ends 0 and (F_8)^n.
Original entry on oeis.org
1, 1, 10, 804, 518376, 2674194448, 110368339035808, 36440751353074277952, 96254339565438079064819328, 2033964285682509941820879401890048, 343839935881726495233403720783311789640192, 465006794599984581603302662503095770372066384585728
Offset: 0
a(3) = 804 = 1 * 1 + 73 * 2 + 657 * 1, counting:
the unrefined chain 0 < (F_8)^3;
73 chains 0 < V < (F_8)^3, with dim(V) = 1; another
73 chains 0 < V < (F_8)^3, with dim(V) = 2; and
657 chains 0 < V_1 < V_2 < (F_8)^3.
A347846
a(n) is the number of (strict) chains of subspaces with ends 0 and (F_9)^n.
Original entry on oeis.org
1, 1, 11, 1093, 979163, 7895396653, 572984959186643, 374244678702477629605, 2199939020346263706461674955, 116387990444553949414146511586296381, 55417662962428710787068813831544886356769891, 237482030708312867514661156730660313316831290472695733
Offset: 0
a(3) = 1093 = 1 * 1 + 91 * 2 + 910 * 1, counting:
the unrefined chain 0 < (F_9)^3;
91 chains 0 < V < (F_9)^3, with dim(V) = 1; another
91 chains 0 < V < (F_9)^3, with dim(V) = 2; and
910 chains 0 < V_1 < V_2 < (F_9)^3.
A289546
Triangle read by rows. T(n,k) is the number of flags in an n dimensional vector space over GF(2) that have length exactly k, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 1, 14, 21, 0, 1, 65, 315, 315, 0, 1, 372, 4650, 13020, 9765, 0, 1, 2823, 87234, 527310, 1025325, 615195, 0, 1, 29210, 2291715, 27448764, 105413175, 156259530, 78129765, 0, 1, 417197, 88508205, 2043137265, 14019952275, 38897461575, 46487210175, 19923090075
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 3;
0, 1, 14, 21;
0, 1, 65, 315, 315;
0, 1, 372, 4650, 13020, 9765;
0, 1, 2823, 87234, 527310, 1025325, 615195;
-
nn = 8; eq[z_] := Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];Table[Take[(Table[ FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0, nn}] CoefficientList[Series[ 1/(1 - u (eq[z] - 1)) /. q -> 2, {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}] // Grid
A293844
Number of chains in the partially ordered (by subspace inclusion) set of all subspaces of the vector space GF(2)^n.
Original entry on oeis.org
1, 3, 15, 143, 2783, 111231, 9031551, 1478288639, 485839107071, 319967908160511, 421866566365149183, 1112976522259306192895, 5873986737617632960438271, 62010172563368117470328995839, 1309330918812255261194272293584895, 55294146267102513780208470077042393087
Offset: 0
-
nn = 16; eq[z_] := Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0, nn}] CoefficientList[Series[ eq[z]^2/(1 - (eq[z] - 1)) /. q -> 2, {z, 0, nn}], z]
Showing 1-10 of 14 results.
Comments