cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A289946 a(n) = Sum_{k=1..n} k!^6.

Original entry on oeis.org

1, 65, 46721, 191149697, 2986175149697, 139317055679149697, 16390300280131775149697, 4296598745804900241599149697, 2283384320190476620685217983149697, 2283382306976051006261597069217983149697
Offset: 1

Views

Author

Eric W. Weisstein, Jul 16 2017

Keywords

Crossrefs

Cf. A007489 (k!), A104344 (k!^2), A289945 (k!^4).
Cf. A289947 (indices giving primes).

Programs

  • Mathematica
    Table[Sum[k!^6, {k, n}], {n, 10}]
    Accumulate[(Range[10]!)^6] (* Harvey P. Dale, May 14 2023 *)
  • PARI
    a(n) = sum(k=1, n, k!^6); \\ Michel Marcus, Jul 16 2017

A293845 Triangle read by rows: T(n,k) is the number of chains of length k in the partially ordered (by subspace inclusion) set of all subspaces of GF(2)^n, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 2, 1, 5, 7, 3, 16, 50, 56, 21, 67, 446, 1010, 945, 315, 374, 5395, 22692, 40455, 32550, 9765, 2825, 92881, 704601, 2167179, 3193155, 2255715, 615195, 29212, 2350136, 32061404, 162602418, 394534644, 496062000, 312519060, 78129765, 417199, 89342600, 2220570872, 18194735010, 68980503390, 138302085600, 151794972000
Offset: 0

Views

Author

Geoffrey Critzer, Oct 17 2017

Keywords

Examples

			Triangle begins:
1;
2, 1;
5, 7, 3;
16, 50, 56, 21;
67, 446, 1010, 945, 315;
374, 5395, 22692, 40455, 32550, 9765;
...
		

Crossrefs

Cf. A289546, A293844 (row sums), A005329 (main diagonal), A006116 (column k = 0).

Programs

  • Mathematica
    nn = 10; eq[z_] :=Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}]; Grid[Map[Select[#, # > 0 &] &,
      Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0,
         nn}] CoefficientList[Series[ eq[z]^2/(1 - u (eq[z] - 1)) /. q -> 2, {z, 0, nn}], {z, u}]]]

Formula

T(n,k)/A005329(n) is the coefficient of y^k*x^n in eq(x)^2/(1 - y (eq(x) - 1)) where eq(x) is the q-exponential function.
Showing 1-2 of 2 results.