cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A104344 a(n) = Sum_{k=1..n} k!^2.

Original entry on oeis.org

1, 5, 41, 617, 15017, 533417, 25935017, 1651637417, 133333531817, 13301522971817, 1606652445211817, 231049185247771817, 39006837228880411817, 7639061293780877851817, 1717651314017980301851817, 439480788011413032845851817, 126953027293558583218061851817
Offset: 1

Views

Author

Eric W. Weisstein, Mar 02 2005

Keywords

Crossrefs

Sum_{k=1..n} (k!)^m: A007489 (m=1), this sequence (m=2), A138564 (m=3), A289945 (m=4), A316777 (m=5), A289946 (m=6).

Programs

  • Mathematica
    Table[Sum[(k!)^2,{k,n}],{n,15}] (* Harvey P. Dale, Jul 21 2011 *)
    Accumulate[(Range[20]!)^2] (* Much more efficient than the above program. *) (* Harvey P. Dale, Aug 15 2022 *)
  • PARI
    a(n) = sum(k=1, n, k!^2); \\ Michel Marcus, Jul 16 2017

Formula

a(n) = A061062(n) - 1. - Michel Marcus, Feb 28 2014

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Sep 24 2009

A289945 a(n) = Sum_{k=1..n} k!^4.

Original entry on oeis.org

1, 17, 1313, 333089, 207693089, 268946253089, 645510228813089, 2643553803594573089, 17342764866576345933089, 173418555892594089945933089, 2538940579958951120707545933089, 52646414799433780559063261145933089
Offset: 1

Views

Author

Eric W. Weisstein, Jul 16 2017

Keywords

Comments

The only prime in this sequence is a(2) = 17 since a(n) is divisible by 13 for n >= 12 and there are no other primes with n < 12.

Crossrefs

Cf. A007489 (k!), A104344 (k!^2), A289946 (k!^6).

Programs

  • Mathematica
    Table[Sum[k!^4, {k, n}], {n, 12}]
    Accumulate[(Range[15]!)^4] (* Harvey P. Dale, Jul 12 2019 *)
  • PARI
    a(n) = sum(k=1, n, k!^4); \\ Michel Marcus, Jul 16 2017

A138564 a(1) = 1; a(n) = a(n-1) + (n!)^3.

Original entry on oeis.org

1, 9, 225, 14049, 1742049, 374990049, 128399054049, 65676719822049, 47850402559694049, 47832576242431694049, 63649302669112063694049, 109966989623147836159694049, 241567605673714904675071694049
Offset: 1

Views

Author

Jonathan Vos Post, May 18 2008

Keywords

Comments

By sum of cubes factorization, every a(n) > 1 is a multiple of 9, hence none of these are prime, unlike the case of sum of squares of factorials (i.e. (1!)^2 + (2!)^2+ (3!)^2+ (4!)^2 = 617 is prime; 41117342095090841723228045851817 = (1!)^2 + (2!)^2 + (3!)^2 + (4!)^2 + (5!)^2 + (6!)^2 + (7!)^2 + (8!)^2 + (9!)^2 + (10!)^2 + (11!)^2 + (12!)^2 + (13!)^2 + (14!)^2 + (15!)^2 + (16!)^2 + (17!)^2 + (18!)^2 is prime).

Examples

			a(18) = (1!)^3 + (2!)^3 + (3!)^3 + (4!)^3 + (5!)^3 + (6!)^3 + (7!)^3 + (8!)^3 + (9!)^3 + (10!)^3 + (11!)^3 + (12!)^3 + (13!)^3 + (14!)^3 + (15!)^3 + (16!)^3 + (17!)^3 + (18!)^3 = 262480797594664584673157017306412926841599694049.
		

Crossrefs

Sum_{k=1..n} (k!)^m: A007489 (m=1), A104344 (m=2), this sequence (m=3), A289945 (m=4), A289946 (m=6).

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,a+((n+1)!)^3}; Transpose[NestList[nxt,{1,1},20]][[2]] (* Harvey P. Dale, Mar 08 2015 *)

Formula

a(n) = Sum_{k=1..n} (k!)^3 = Sum_{k=1..n} A000578(A000142(n)).

A289947 Values of n for which Sum_{k=1..n} k!^6 is prime.

Original entry on oeis.org

5, 34, 102
Offset: 1

Views

Author

Eric W. Weisstein, Jul 16 2017

Keywords

Comments

A289946(n) is divisible by 1091 for n >= 1090, and checking the terms below that gives A289946(a(3)) = A289946(102) as the final prime in the sequence.

Examples

			A289946(5) = 2986175149697 is prime.
		

Crossrefs

Cf. A289946 (Sum_{k=1..n} k!^6).
Cf. A100289 (k!^2), A290014 (k!^10).

Programs

  • PARI
    isok(n) = isprime(sum(k=1, n, k!^6)); \\ Michel Marcus, Jul 17 2017

A316777 a(n) = Sum_{k=1..n} (k!)^5.

Original entry on oeis.org

1, 33, 7809, 7970433, 24891170433, 193516654370433, 3252209580756770433, 106565314598088199970433, 6292489787293574101716770433, 629244614687684894925781716770433, 101340090272908294280184341461716770433, 25216602106682627624613336066827221716770433
Offset: 1

Views

Author

Seiichi Manyama, Aug 03 2018

Keywords

Crossrefs

Sum_{k=1..n} (k!)^m: A007489 (m=1), A104344 (m=2), A138564 (m=3), A289945 (m=4), this sequence (m=5), A289946 (m=6).

Programs

  • Mathematica
    Accumulate[(Range[15]!)^5] (* Harvey P. Dale, Jan 24 2021 *)
  • PARI
    {a(n) = sum(k=1, n, k!^5)}

A339311 a(n) = Sum_{k=1..n} (k!)^n.

Original entry on oeis.org

1, 5, 225, 333089, 24891170433, 139317055679149697, 82606511560391889386751489, 6984964663477899063759529684476994049, 109110688697205077023425816926479750793809817618433, 395940866162019279867473563258123776010342586429441374123441432577
Offset: 1

Views

Author

Seiichi Manyama, Nov 29 2020

Keywords

Crossrefs

Sum_{k=1..n} (k!)^m: A007489 (m=1), A104344 (m=2), A138564 (m=3), A289945 (m=4), A316777 (m=5), A289946 (m=6).

Programs

  • Mathematica
    a[n_] := Sum[(k!)^n, {k, 1, n}]; Array[a, 10] (* Amiram Eldar, Apr 28 2021 *)
  • PARI
    {a(n) = sum(k=1, n, k!^n)}

A290250 Smallest (prime) number a(n) > 2 such that Sum_{k=1..a(n)} k!^(2*n) is divisible by a(n).

Original entry on oeis.org

1248829, 13, 1091, 13, 41, 37, 463, 13, 23, 13, 1667, 37, 23, 13, 41, 13, 139
Offset: 1

Views

Author

Eric W. Weisstein, Jul 24 2017

Keywords

Comments

If a(i) exists, then the number of primes in the sequence {Sum_{k=1..n} k!^(2*i)}_n is finite. This follows since all subsequent terms in the sum involve adding (1*2*...*a(i)*...)^(2*i) to the previous term, both of which are divisible by a(i).
The terms from a(19) to a(36) are 46147, 13, 587, 13, 107, 23, 41, 13, 163, 13, 43, 37, 23, 13, 397, 13, 23, 433, and the terms from a(38) to a(50) are 13, 419, 13, 9199, 23, 2129, 13, 41, 13, 2358661, 37, 409, 13. If they exist, a(18) > 25*10^6 and a(37) > 14*10^6. - Giovanni Resta, Jul 27 2017
a(37) = 17424871; a(18) > 5*10^7 - Mark Rodenkirch, Sep 04 2017

Examples

			sum(k=1..1248829, k!^2) = 14+ million-digit number which is divisible by 1248829
sum(k=1..13, k!^4) = 1503614384819523432725006336630745933089, which is divisible by 13
sum(k=1..1091, k!^6) = 17055-digit number which is divisible by 1091
		

Crossrefs

Cf. A100289 (n such that Sum_{k=1..n} k!^2 is prime), A289945 (k!^4), A289946 (k!^6), A290014 (k!^10).

Programs

  • Mathematica
    Table[Module[{sum = 1, fac = 1, k = 2}, While[! Divisible[sum += (fac *= k)^(2 n), k], k++]; k], {n, 17}]
Showing 1-7 of 7 results.