A104344
a(n) = Sum_{k=1..n} k!^2.
Original entry on oeis.org
1, 5, 41, 617, 15017, 533417, 25935017, 1651637417, 133333531817, 13301522971817, 1606652445211817, 231049185247771817, 39006837228880411817, 7639061293780877851817, 1717651314017980301851817, 439480788011413032845851817, 126953027293558583218061851817
Offset: 1
-
Table[Sum[(k!)^2,{k,n}],{n,15}] (* Harvey P. Dale, Jul 21 2011 *)
Accumulate[(Range[20]!)^2] (* Much more efficient than the above program. *) (* Harvey P. Dale, Aug 15 2022 *)
-
a(n) = sum(k=1, n, k!^2); \\ Michel Marcus, Jul 16 2017
A289945
a(n) = Sum_{k=1..n} k!^4.
Original entry on oeis.org
1, 17, 1313, 333089, 207693089, 268946253089, 645510228813089, 2643553803594573089, 17342764866576345933089, 173418555892594089945933089, 2538940579958951120707545933089, 52646414799433780559063261145933089
Offset: 1
-
Table[Sum[k!^4, {k, n}], {n, 12}]
Accumulate[(Range[15]!)^4] (* Harvey P. Dale, Jul 12 2019 *)
-
a(n) = sum(k=1, n, k!^4); \\ Michel Marcus, Jul 16 2017
A138564
a(1) = 1; a(n) = a(n-1) + (n!)^3.
Original entry on oeis.org
1, 9, 225, 14049, 1742049, 374990049, 128399054049, 65676719822049, 47850402559694049, 47832576242431694049, 63649302669112063694049, 109966989623147836159694049, 241567605673714904675071694049
Offset: 1
a(18) = (1!)^3 + (2!)^3 + (3!)^3 + (4!)^3 + (5!)^3 + (6!)^3 + (7!)^3 + (8!)^3 + (9!)^3 + (10!)^3 + (11!)^3 + (12!)^3 + (13!)^3 + (14!)^3 + (15!)^3 + (16!)^3 + (17!)^3 + (18!)^3 = 262480797594664584673157017306412926841599694049.
-
nxt[{n_,a_}]:={n+1,a+((n+1)!)^3}; Transpose[NestList[nxt,{1,1},20]][[2]] (* Harvey P. Dale, Mar 08 2015 *)
A289947
Values of n for which Sum_{k=1..n} k!^6 is prime.
Original entry on oeis.org
A289946(5) = 2986175149697 is prime.
A316777
a(n) = Sum_{k=1..n} (k!)^5.
Original entry on oeis.org
1, 33, 7809, 7970433, 24891170433, 193516654370433, 3252209580756770433, 106565314598088199970433, 6292489787293574101716770433, 629244614687684894925781716770433, 101340090272908294280184341461716770433, 25216602106682627624613336066827221716770433
Offset: 1
-
Accumulate[(Range[15]!)^5] (* Harvey P. Dale, Jan 24 2021 *)
-
{a(n) = sum(k=1, n, k!^5)}
A339311
a(n) = Sum_{k=1..n} (k!)^n.
Original entry on oeis.org
1, 5, 225, 333089, 24891170433, 139317055679149697, 82606511560391889386751489, 6984964663477899063759529684476994049, 109110688697205077023425816926479750793809817618433, 395940866162019279867473563258123776010342586429441374123441432577
Offset: 1
-
a[n_] := Sum[(k!)^n, {k, 1, n}]; Array[a, 10] (* Amiram Eldar, Apr 28 2021 *)
-
{a(n) = sum(k=1, n, k!^n)}
A290250
Smallest (prime) number a(n) > 2 such that Sum_{k=1..a(n)} k!^(2*n) is divisible by a(n).
Original entry on oeis.org
1248829, 13, 1091, 13, 41, 37, 463, 13, 23, 13, 1667, 37, 23, 13, 41, 13, 139
Offset: 1
sum(k=1..1248829, k!^2) = 14+ million-digit number which is divisible by 1248829
sum(k=1..13, k!^4) = 1503614384819523432725006336630745933089, which is divisible by 13
sum(k=1..1091, k!^6) = 17055-digit number which is divisible by 1091
-
Table[Module[{sum = 1, fac = 1, k = 2}, While[! Divisible[sum += (fac *= k)^(2 n), k], k++]; k], {n, 17}]
Showing 1-7 of 7 results.
Comments