Michel Marcus has authored 1230 sequences. Here are the ten most recent ones:
A387216
Numbers that have at least two prime factors (counting multiplicity) congruent to 1 mod 3.
Original entry on oeis.org
49, 91, 98, 133, 147, 169, 182, 196, 217, 245, 247, 259, 266, 273, 294, 301, 338, 343, 361, 364, 392, 399, 403, 427, 434, 441, 455, 469, 481, 490, 494, 507, 511, 518, 532, 539, 546, 553, 559, 588, 589, 602, 637, 651, 665, 676, 679, 686, 703, 721, 722, 728, 735, 741, 763, 777, 784, 793, 798
Offset: 1
-
res := [];for n in [1..1000] do L := [ f[2] : f in Factorization(n) | f[1] mod 3 eq 1 ]; count := (#L eq 0) select 0 else &+L;if count gt 1 then Append(~res, n); end if; end for; res;
// Vincenzo Librandi, Aug 24 2025
-
ff[{m_,n_}]:=Table[m,n];Select[Range[798],Count[Mod[ff/@FactorInteger[#]//Flatten,3],1]>1&] (* James C. McMahon, Aug 22 2025 *)
-
isok(k) = my(f=factor(k)); sum(i=1, #f~, if ((f[i,1]%3) == 1, f[i,2])) >= 2;
A386390
Numbers k such that k-1 | sigma+(k) where sigma+ is A107758.
Original entry on oeis.org
2, 6, 66, 225, 8646, 101025, 149497986, 20412000225
Offset: 1
-
a107758[n_]:=DivisorSum[n, DivisorSigma[1, #] &, CoprimeQ[n/#, #] &];Select[Range[2,10^6],Divisible[a107758[#],#-1]&] (* James C. McMahon, Aug 21 2025 *)
-
isok(k) = if (k>1, !(sumdiv(k, d, if(gcd(k/d, d) == 1, sigma(d))) % (k-1)));
A383954
a(n) = Product_{i} (phi(p_i^e_i)-1) where n = Product_{i} p_i^e_i and phi is the Euler phi function.
Original entry on oeis.org
1, 0, 1, 1, 3, 0, 5, 3, 5, 0, 9, 1, 11, 0, 3, 7, 15, 0, 17, 3, 5, 0, 21, 3, 19, 0, 17, 5, 27, 0, 29, 15, 9, 0, 15, 5, 35, 0, 11, 9, 39, 0, 41, 9, 15, 0, 45, 7, 41, 0, 15, 11, 51, 0, 27, 15, 17, 0, 57, 3, 59, 0, 25, 31, 33, 0, 65, 15, 21, 0, 69, 15, 71, 0, 19, 17, 45, 0, 77, 21
Offset: 1
-
A383954[n_] := If[n == 1, 1, Times @@ (EulerPhi[Power @@@ FactorInteger[n]] - 1)];
Array[A383954, 100] (* Paolo Xausa, Aug 19 2025 *)
-
a(n) = my(f=factor(n)); prod(k=1, #f~, p=f[k,1]; eulerphi(f[k,1]^f[k,2])-1);
A386949
Irregular triangle whose n-th row lists the nonzero terms of the n-th column of A386755.
Original entry on oeis.org
1, 1, 2, 2, 1, 3, 3, 3, 3, 1, 2, 2, 4, 4, 1, 5, 5, 5, 5, 5, 5, 1, 2, 2, 3, 3, 6, 6, 6, 6, 1, 7, 7, 7, 7, 7, 7, 7, 7, 1, 2, 2, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 1, 3, 3, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9, 1, 2, 2, 5, 5, 5, 5, 10, 10, 10, 10, 10, 10, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 1
Triangle begins:
1;
1, 2, 2;
1, 3, 3, 3, 3;
1, 2, 2, 4, 4;
1, 5, 5, 5, 5, 5, 5;
1, 2, 2, 3, 3, 6, 6, 6, 6;
1, 7, 7, 7, 7, 7, 7, 7, 7;
1, 2, 2, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8;
1, 3, 3, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9;
1, 2, 2, 5, 5, 5, 5, 10, 10, 10, 10, 10, 10;
...
-
orow(n) = my(v=vector(n), m=n); for(k=1, n, my(keepm = m); while(m%k, m--); if (m == 0, keepm=m, v[m] = k; m--); ); v; \\ A386755
nrow(n) = my(ok=1, k=1, last=-1, list=List(), r); while(ok, r=row(k); if ((#r >= n) && r[n], listput(list, r[n])); k++; if (#r>=n, if ((last==n) && (r[n]==0), ok = 0, last = r[n]))); Vec(list);
Original entry on oeis.org
14, 14229, 194931, 8897930, 278110142
Offset: 1
A386871
Least k such that A056100(k) = n or -1 if no such k exists.
Original entry on oeis.org
6, 124357252657, 4, 33, 8, 145, 9, 37063859, 16, 51, 26, 1441, 15, 2353, 34, 69, 20, 1011377103546119, 27, 7201, 25, 87, 115, 9911837, 56, 385, 58, 45, 62, 86125529, 57, 30721, 35, 123, 74, 295, 90, 15686608811, 82, 141, 86, 70561, 49, 77857739, 94, 159, 329, 34884199
Offset: 1
-
a[n_]:=Module[{k=0},Until[Mod[DivisorSigma[1, k]*EulerPhi[k] + 1, k]==n,k++];k] (* James C. McMahon, Aug 06 2025 *)
A386436
Smallest k for which A385731(k) = n.
Original entry on oeis.org
1, 2, 6, 42, 1770, 47058, 547470, 8648458, 623254170
Offset: 1
-
a[n_]:=Module[{k=0},Until[Length[Select[Divisors[k], Mod[-#, k]==PowerMod[-#, #, k]==PowerMod[#, #, k]&]]==n,k++];k];Array[a,7] (* James C. McMahon, Aug 06 2025 *)
A386856
Least k such that A056100(k) = 2*n+1 or -1 if no such k exists.
Original entry on oeis.org
6, 4, 8, 9, 16, 26, 15, 34, 20, 27, 25, 115, 56, 58, 62, 57, 35, 74, 90, 82, 86, 49, 94, 329, 60, 106, 517582, 78, 91, 122, 110, 77, 128, 111, 142, 146, 88, 427, 158, 102, 100, 265, 273, 178, 242, 95, 212, 194, 104, 202, 125, 462, 214, 218, 132, 121, 344, 138, 470, 241582
Offset: 0
-
a[n_]:=Module[{k=1},While[Mod[DivisorSigma[1,k]EulerPhi[k]+1,k]!=2n+1, k++]; k]; Array[a,60,0] (* Stefano Spezia, Aug 05 2025 *)
-
f(n) = (sigma(n)*eulerphi(n)+1) % n; \\ A056100
a(n) = my(k=1); while (f(k) != 2*n+1, k++); k;
Original entry on oeis.org
5, 31, 89, 103, 233, 313, 317, 321, 331, 337, 347, 359, 363, 371, 383, 397, 401, 413, 417, 421, 431, 441, 443, 461, 463, 471, 479, 481, 483, 491, 493, 499, 501, 507, 511, 531, 537, 543, 551, 561, 571, 581, 603, 629, 631, 641, 643, 653, 661, 671, 677, 683, 689
Offset: 1
A385810
Integers x such that sigma(x)^2 - 3*x^2 is a square.
Original entry on oeis.org
4, 6, 28, 45, 48, 60, 156, 208, 360, 496, 1170, 2016, 2520, 2925, 5733, 7605, 8128, 166617, 167580, 380160, 659044, 964080, 1085760, 1539900, 1571328, 1693440, 1778400, 2069613, 2224800, 2306304, 2410200, 2502720, 2522880, 4242420, 4311216, 4840192, 4917744, 4961484, 5331744, 5761536
Offset: 1
Subsequence, with (x,x,x) triples, of
A385531.
-
fQ[x_] := IntegerQ@ Sqrt[DivisorSigma[1, x]^2 - 3*x^2]; Select[Range[2^16], fQ] (* Michael De Vlieger, Jul 09 2025 *)
-
isok(x) = issquare(sigma(x)^2-3*x^2);
Comments