cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Michel Marcus

Michel Marcus's wiki page.

Michel Marcus has authored 1230 sequences. Here are the ten most recent ones:

A387216 Numbers that have at least two prime factors (counting multiplicity) congruent to 1 mod 3.

Original entry on oeis.org

49, 91, 98, 133, 147, 169, 182, 196, 217, 245, 247, 259, 266, 273, 294, 301, 338, 343, 361, 364, 392, 399, 403, 427, 434, 441, 455, 469, 481, 490, 494, 507, 511, 518, 532, 539, 546, 553, 559, 588, 589, 602, 637, 651, 665, 676, 679, 686, 703, 721, 722, 728, 735, 741, 763, 777, 784, 793, 798
Offset: 1

Author

Michel Marcus, Aug 22 2025

Keywords

Crossrefs

Cf. A002476 (primes congruent to 1 mod 3), A050931 (at least one).

Programs

  • Magma
    res := [];for n in [1..1000] do L := [ f[2] : f in Factorization(n) | f[1] mod 3 eq 1 ]; count := (#L eq 0) select 0 else &+L;if count gt 1 then Append(~res, n); end if; end for; res;
     // Vincenzo Librandi, Aug 24 2025
  • Mathematica
    ff[{m_,n_}]:=Table[m,n];Select[Range[798],Count[Mod[ff/@FactorInteger[#]//Flatten,3],1]>1&] (* James C. McMahon, Aug 22 2025 *)
  • PARI
    isok(k) = my(f=factor(k)); sum(i=1, #f~, if ((f[i,1]%3) == 1, f[i,2])) >= 2;
    

A386390 Numbers k such that k-1 | sigma+(k) where sigma+ is A107758.

Original entry on oeis.org

2, 6, 66, 225, 8646, 101025, 149497986, 20412000225
Offset: 1

Author

Michel Marcus, Aug 20 2025

Keywords

Crossrefs

Programs

  • Mathematica
    a107758[n_]:=DivisorSum[n, DivisorSigma[1, #] &, CoprimeQ[n/#, #] &];Select[Range[2,10^6],Divisible[a107758[#],#-1]&] (* James C. McMahon, Aug 21 2025 *)
  • PARI
    isok(k) = if (k>1, !(sumdiv(k, d, if(gcd(k/d, d) == 1, sigma(d))) % (k-1)));

Extensions

a(8) from Vincenzo Librandi, Aug 21 2025

A383954 a(n) = Product_{i} (phi(p_i^e_i)-1) where n = Product_{i} p_i^e_i and phi is the Euler phi function.

Original entry on oeis.org

1, 0, 1, 1, 3, 0, 5, 3, 5, 0, 9, 1, 11, 0, 3, 7, 15, 0, 17, 3, 5, 0, 21, 3, 19, 0, 17, 5, 27, 0, 29, 15, 9, 0, 15, 5, 35, 0, 11, 9, 39, 0, 41, 9, 15, 0, 45, 7, 41, 0, 15, 11, 51, 0, 27, 15, 17, 0, 57, 3, 59, 0, 25, 31, 33, 0, 65, 15, 21, 0, 69, 15, 71, 0, 19, 17, 45, 0, 77, 21
Offset: 1

Author

Michel Marcus, Aug 19 2025

Keywords

Comments

This is the phi- function in Sandor and Atanassof.

Crossrefs

Cf. A000010 (phi), A107758 (sigma+), A057723 (sigma-), A055653 (phi+).

Programs

  • Mathematica
    A383954[n_] := If[n == 1, 1, Times @@ (EulerPhi[Power @@@ FactorInteger[n]] - 1)];
    Array[A383954, 100] (* Paolo Xausa, Aug 19 2025 *)
  • PARI
    a(n) = my(f=factor(n)); prod(k=1, #f~, p=f[k,1]; eulerphi(f[k,1]^f[k,2])-1);

Formula

From Amiram Eldar, Aug 19 2025: (Start)
Multiplicative with a(p^e) = (p-1)*p^(e-1) - 1.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 3/p^s + 1/p^(2*s-1) + 1/p^(2*s)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + 1/(p+1) - (p+1)/p^2) = 0.39439177573628632634... . (End)

A386949 Irregular triangle whose n-th row lists the nonzero terms of the n-th column of A386755.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 3, 3, 3, 1, 2, 2, 4, 4, 1, 5, 5, 5, 5, 5, 5, 1, 2, 2, 3, 3, 6, 6, 6, 6, 1, 7, 7, 7, 7, 7, 7, 7, 7, 1, 2, 2, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 1, 3, 3, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9, 1, 2, 2, 5, 5, 5, 5, 10, 10, 10, 10, 10, 10, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 1

Author

Michel Marcus, Aug 10 2025

Keywords

Examples

			Triangle begins:
  1;
  1, 2, 2;
  1, 3, 3, 3, 3;
  1, 2, 2, 4, 4;
  1, 5, 5, 5, 5, 5, 5;
  1, 2, 2, 3, 3, 6, 6, 6, 6;
  1, 7, 7, 7, 7, 7, 7, 7, 7;
  1, 2, 2, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8;
  1, 3, 3, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9;
  1, 2, 2, 5, 5, 5, 5, 10, 10, 10, 10, 10, 10;
  ...
		

Crossrefs

Cf. A386755 (original triangle), A386520 (row sums).
Cf. A027750.

Programs

  • PARI
    orow(n) = my(v=vector(n), m=n); for(k=1, n, my(keepm = m); while(m%k, m--); if (m == 0, keepm=m, v[m] = k; m--); ); v; \\ A386755
    nrow(n) = my(ok=1, k=1, last=-1, list=List(), r); while(ok, r=row(k); if ((#r >= n) && r[n], listput(list, r[n])); k++; if (#r>=n, if ((last==n) && (r[n]==0), ok = 0, last = r[n]))); Vec(list);

A386911 Numbers k such that A064945(k) = A064945(k+1).

Original entry on oeis.org

14, 14229, 194931, 8897930, 278110142
Offset: 1

Author

Michel Marcus, Aug 07 2025

Keywords

Comments

No other terms up to 10^9.

Crossrefs

Cf. A064945.

Programs

A386871 Least k such that A056100(k) = n or -1 if no such k exists.

Original entry on oeis.org

6, 124357252657, 4, 33, 8, 145, 9, 37063859, 16, 51, 26, 1441, 15, 2353, 34, 69, 20, 1011377103546119, 27, 7201, 25, 87, 115, 9911837, 56, 385, 58, 45, 62, 86125529, 57, 30721, 35, 123, 74, 295, 90, 15686608811, 82, 141, 86, 70561, 49, 77857739, 94, 159, 329, 34884199
Offset: 1

Author

Michel Marcus, Aug 06 2025

Keywords

Comments

Wanted terms: a(18), a(38), a(72), a(80).
a(38) = 15686608811 (found by Tomas Rokicki), a(80) = 4222433393407, and a(18), a(72) > 6*10^12. - Giovanni Resta, Aug 09 2025
a(72) > a(18). - Martin Ehrenstein, Aug 10 2025

Crossrefs

Cf. A056100, A386856 (odd bisection), A015706.

Programs

  • Mathematica
    a[n_]:=Module[{k=0},Until[Mod[DivisorSigma[1, k]*EulerPhi[k] + 1, k]==n,k++];k] (* James C. McMahon, Aug 06 2025 *)

Extensions

a(2) from Tomas Rokicki, Aug 05 2025
a(18) from Martin Ehrenstein, Aug 10 2025
a(19)-a(37) from Hugo Pfoertner, Aug 11 2025
a(38) from Tomas Rokicki, Aug 09 2025
More terms from Hugo Pfoertner, Aug 11 2025

A386436 Smallest k for which A385731(k) = n.

Original entry on oeis.org

1, 2, 6, 42, 1770, 47058, 547470, 8648458, 623254170
Offset: 1

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Module[{k=0},Until[Length[Select[Divisors[k], Mod[-#, k]==PowerMod[-#, #, k]==PowerMod[#, #, k]&]]==n,k++];k];Array[a,7] (* James C. McMahon, Aug 06 2025 *)

Extensions

a(9) from Michel Marcus, Jul 21 2025

A386856 Least k such that A056100(k) = 2*n+1 or -1 if no such k exists.

Original entry on oeis.org

6, 4, 8, 9, 16, 26, 15, 34, 20, 27, 25, 115, 56, 58, 62, 57, 35, 74, 90, 82, 86, 49, 94, 329, 60, 106, 517582, 78, 91, 122, 110, 77, 128, 111, 142, 146, 88, 427, 158, 102, 100, 265, 273, 178, 242, 95, 212, 194, 104, 202, 125, 462, 214, 218, 132, 121, 344, 138, 470, 241582
Offset: 0

Author

Michel Marcus, Aug 05 2025

Keywords

Comments

a(n) is the least k such that (sigma(k)*phi(k) + 1) mod k = 2*n+1 or -1 if no such k exists.

Crossrefs

Cf. A056100.

Programs

  • Mathematica
    a[n_]:=Module[{k=1},While[Mod[DivisorSigma[1,k]EulerPhi[k]+1,k]!=2n+1, k++]; k]; Array[a,60,0] (* Stefano Spezia, Aug 05 2025 *)
  • PARI
    f(n) = (sigma(n)*eulerphi(n)+1) % n; \\ A056100
    a(n) = my(k=1); while (f(k) != 2*n+1, k++); k;

A386494 Primitive terms of A297305.

Original entry on oeis.org

5, 31, 89, 103, 233, 313, 317, 321, 331, 337, 347, 359, 363, 371, 383, 397, 401, 413, 417, 421, 431, 441, 443, 461, 463, 471, 479, 481, 483, 491, 493, 499, 501, 507, 511, 531, 537, 543, 551, 561, 571, 581, 603, 629, 631, 641, 643, 653, 661, 671, 677, 683, 689
Offset: 1

Author

Michel Marcus, Jul 23 2025

Keywords

Comments

Terms of A297305 that are not a multiple of a lesser term of A297305.

Crossrefs

Cf. A297305.

Extensions

More terms from Jinyuan Wang, Jul 24 2025

A385810 Integers x such that sigma(x)^2 - 3*x^2 is a square.

Original entry on oeis.org

4, 6, 28, 45, 48, 60, 156, 208, 360, 496, 1170, 2016, 2520, 2925, 5733, 7605, 8128, 166617, 167580, 380160, 659044, 964080, 1085760, 1539900, 1571328, 1693440, 1778400, 2069613, 2224800, 2306304, 2410200, 2502720, 2522880, 4242420, 4311216, 4840192, 4917744, 4961484, 5331744, 5761536
Offset: 1

Author

Michel Marcus, Jul 09 2025

Keywords

Crossrefs

Subsequence, with (x,x,x) triples, of A385531.
Cf. A000203.
Supersequence of A000396.

Programs

  • Mathematica
    fQ[x_] := IntegerQ@ Sqrt[DivisorSigma[1, x]^2 - 3*x^2]; Select[Range[2^16], fQ] (* Michael De Vlieger, Jul 09 2025 *)
  • PARI
    isok(x) = issquare(sigma(x)^2-3*x^2);