cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Hugo Pfoertner

Hugo Pfoertner's wiki page.

Hugo Pfoertner has authored 1575 sequences. Here are the ten most recent ones:

A387500 Median of twin prime pairs with n decimal digits.

Original entry on oeis.org

5, 36, 420, 4644, 51060, 518238, 5206320, 52565169, 528113445, 5302625562
Offset: 1

Author

Hugo Pfoertner, Sep 02 2025

Keywords

Comments

It is assumed that a pair of twin primes is characterized by its mean. The median of an even number of values is taken as the arithmetic mean of the two central elements in their sorted list.

Examples

			a(1): 2 pairs {3,5}, {5,7}, median = mean of {4,6} = 5;
a(2): 6 pairs {11,13}, {17,19}, {29,31}, {41,43}, {59,61}, {71,73}, median = mean of {30,42} = 36.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Module[{s={},p=NextPrime[10^(n-1)]},While[p<10^n-4,If[PrimeQ[p+2],AppendTo[s,p+1]];p=NextPrime[p]];Median[s]];Array[a,7] (* James C. McMahon, Sep 02 2025 *)

A387495 Exponents k such that exp(k)/Pi is closer to an integer than for any smaller k.

Original entry on oeis.org

0, 1, 7, 22, 30, 50, 79, 103, 262, 993, 20819, 39397
Offset: 1

Author

Hugo Pfoertner, Aug 31 2025

Keywords

Examples

			a(1) = 0: exp(0)/Pi = 0.3183... = distance to nearest integer 0;
a(2) = 1: exp(1)/Pi = 0.8652559..., distance to nearest integer 1 = 0.134744...;
a(3) = 7: exp(7)/Pi = 349.0691758..., distance to nearest integer 349 = 0.0691758...;
a(4) = 22: exp(22)/Pi = 1141113200.0309559..., distance to nearest integer = 0.0309...
		

Crossrefs

A387146 Number of unlabeled biconnected cubic simple graphs with 2n nodes.

Original entry on oeis.org

1, 0, 1, 2, 5, 18, 81, 480, 3874, 39866, 497818, 7187627, 116349635
Offset: 0

Author

Hugo Pfoertner, Aug 21 2025

Keywords

Crossrefs

A387144 a(n) is the least k>1 such that omega(k^n-1) = omega(k^n+1) with omega = A001221.

Original entry on oeis.org

3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3483, 3, 2, 2, 2343, 8, 2, 3, 420, 2, 23, 2, 65, 3, 15, 2, 724, 2, 33, 15
Offset: 1

Author

Hugo Pfoertner, Aug 18 2025

Comments

a(32)...a(39): >1000, 2, 5, 8, >1000, 4, 8, 7.

Crossrefs

Programs

  • PARI
    a387144(n) = for(k=2, oo, if(omega(k^n-1)==omega(k^n+1), return(k)))

A387145 a(n) is the least k>1 such that bigomega(k^n-1) = bigomega(k^n+1) with bigomega=A001222.

Original entry on oeis.org

4, 2, 6, 150, 3, 60, 4, 40, 19, 2, 2, 12450, 8, 2, 5, 4590, 5, 96, 5, 420, 2, 12, 2
Offset: 1

Author

Hugo Pfoertner, Aug 18 2025

Comments

a(24)...a(39): >3300, 3, 18, 33, >1000, 2, 32, 3, >625, 6, 13, 8, >1000, 4, 32, 2.

Crossrefs

Programs

  • PARI
    a387145(n) = for(k=2, oo, if(bigomega(k^n-1)==bigomega(k^n+1), return(k)))

A386241 Decimal expansion of sqrt(5)*sin(Pi/8).

Original entry on oeis.org

8, 5, 5, 7, 0, 6, 1, 6, 8, 6, 3, 1, 2, 8, 3, 8, 4, 7, 7, 7, 4, 8, 1, 8, 0, 7, 1, 8, 2, 4, 6, 8, 3, 7, 0, 7, 3, 0, 1, 7, 0, 4, 1, 9, 3, 5, 9, 7, 3, 3, 4, 5, 4, 8, 0, 8, 7, 2, 2, 4, 2, 2, 8, 6, 4, 8, 0, 0, 9, 5, 0, 6, 5, 9, 8, 8, 2, 5, 8, 7, 5, 5, 4, 5, 0, 0, 9
Offset: 0

Author

Hugo Pfoertner, Jul 18 2025

Keywords

Comments

Upper bound of the wobbling distance S of two rotated square lattices. See A307110 and A307731 for the special case of rotation angle Pi/4. According to Jan Fricke (1999), the angle Pi/4 is the most unfavorable case, i.e., smaller bounds can be found for all other angles.

Examples

			0.8557061686312838477748180718246837073...
		

Programs

Formula

The minimal polynomial is 8*x^4 - 40*x^2 + 25. - Joerg Arndt, Aug 02 2025

A386242 a(n) is the least perfect power A001597 with binary weight n.

Original entry on oeis.org

1, 9, 25, 27, 121, 125, 1521, 2025, 5625, 24025, 42875, 59319, 32761, 393129, 851929, 1540081, 6275025, 15327225, 27258841, 41925625, 127893481, 243204025, 385611769, 268336125, 1979449081, 4823441401, 12870221809, 25698491351, 51354402813, 127506840561, 205822820329
Offset: 1

Author

Hugo Pfoertner, Jul 23 2025

Keywords

Crossrefs

Programs

  • Mathematica
    upto = 10^11; L = Table[2 upto, {2 + Log2@ upto}]; Do[n = 1; While[(v = n^k) <= upto, nb = Plus @@ IntegerDigits[v, 2]; If[L[[nb]] > v, L[[nb]] = v]; n++], {k, 2, Log2[upto]}]; Take[L, Position[L, 2 upto][[1, 1]] - 1] (* Giovanni Resta, Jul 23 2025 *)

Extensions

a(27)-a(31) from Giovanni Resta, Jul 23 2025

A386240 Primes containing the digit string "007" in their decimal representation.

Original entry on oeis.org

4007, 6007, 9007, 10007, 10079, 12007, 13007, 16007, 20071, 24007, 30071, 36007, 45007, 50077, 60077, 61007, 64007, 70079, 78007, 80071, 80077, 82007, 88007, 90007, 90071, 90073, 94007, 97007, 100703, 100733, 100741, 100747, 100769, 100787, 100799, 103007, 108007
Offset: 1

Author

Hugo Pfoertner, Jul 16 2025

Keywords

Comments

Could also be called "James Bond" primes.

Crossrefs

Programs

  • Maple
    q:= n-> isprime(n) and searchtext("007", ""||n)>0:
    select(q, [$1..110000])[];  # Alois P. Heinz, Jul 17 2025
  • Mathematica
    Select[Prime[Range[553, 12000]], StringContainsQ[IntegerString[#], "007"] &] (* Paolo Xausa, Jul 17 2025 *)
  • PARI
    is(n) = if(!isprime(n), return(0)); while(n > 10, if(n%1000==7, return(1)); n\=10); 0 \\ David A. Corneth, Jul 17 2025
  • Python
    from sympy import sieve
    print([sieve[n] for n in range(1,10200) if "007" in str(sieve[n])]) # Karl-Heinz Hofmann, Jul 17 2025
    

A385755 Numbers k with a unique combination of bigomega(k) and sopfr(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 26, 29, 30, 31, 32, 34, 35, 36, 37, 38, 41, 43, 46, 47, 48, 53, 58, 59, 61, 62, 64, 67, 70, 71, 72, 73, 74, 79, 82, 83, 86, 89, 94, 96, 97, 101, 103, 106, 107, 109, 113, 118, 122, 127, 128, 131
Offset: 1

Author

Hugo Pfoertner, Jul 09 2025

Keywords

Examples

			All primes p are in the sequence, because they are characterized by the pair [b,s] = [bigomega=1, sopfr=p], and no other numbers have this pair.
All even semiprimes 2*p are terms, because no other number can have [b,s]=[2,p+2]. p+2 is odd, and odd semiprimes p*q would have even s.
20 with [b,s]=[3,2+2+5] and 27 with [b,s]=[3,3+3+3] are not in the sequence, because both have [b,s]=[3,9].
21 and 25 are not in the sequence, because both have [b,s]=[2,10].
36 is in the sequence as it is the only number having [4, 10]. - _David A. Corneth_, Jul 11 2025
From _Michael De Vlieger_, Jul 13 2025: (Start)
Plot a(n) at (x,y) = (A001222(a(n)), A001414(a(n))):
     0    1    2    3    4    5    6    7     8     9
-----------------------------------------------------
 0:  1
 1:
 2:       2
 3:       3
 4:            4
 5:       5    6
 6:            9    8
 7:       7   10   12
 8:           15   18   16
 9:           14        24
10:                30   36   32
11:      11                  48
12:           35             72   64
13:      13   22                  96
14:                70            144  128
15:           26                      192
16:                                   288   256
17:      17                                 384
18:                                         576   512
19:      19   34                                  768
         ...  (End)
		

Crossrefs

A385756 Complement of A385755.

Original entry on oeis.org

20, 21, 25, 27, 28, 33, 39, 40, 42, 44, 45, 49, 50, 51, 52, 54, 55, 56, 57, 60, 63, 65, 66, 68, 69, 75, 76, 77, 78, 80, 81, 84, 85, 87, 88, 90, 91, 92, 93, 95, 98, 99, 100, 102, 104, 105, 108, 110, 111, 112, 114, 115, 116, 117, 119, 120, 121, 123, 124, 125, 126, 129
Offset: 1

Author

Hugo Pfoertner, Jul 09 2025

Keywords

Crossrefs