cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: David A. Corneth

David A. Corneth's wiki page.

David A. Corneth has authored 257 sequences. Here are the ten most recent ones:

A387100 a(n) is the least number that can be written in exactly n ways as s_1^x_1 + ... + s_t^x_t, with 1 < s_1 < ... < s_t and {s_1,..., s_t} = {x_1,..., x_t}.

Original entry on oeis.org

4, 545, 23506, 331979, 5260225, 10630307
Offset: 1

Author

David A. Corneth, Aug 16 2025

Keywords

Examples

			a(5) = 5260225 via
5260225 = 2^22 + 3^8 + 4^5 + 5^2 + 7^7 + 8^3 + 22^4
        = 2^21 + 3^8 + 4^10 + 7^3 + 8^7 + 10^4 + 21^2
        = 2^7 + 3^14 + 4^5 + 5^8 + 6^6 + 7^3 + 8^2 + 14^4
        = 2^15 + 3^10 + 4^9 + 5^5 + 6^4 + 7^6 + 9^7 + 10^3 + 15^2
        = 2^11 + 3^7 + 4^10 + 5^9 + 6^8 + 7^3 + 8^5 + 9^6 + 10^4 + 11^2,
and no positive integer smaller than 5260225 can be written as such in exactly five ways.
		

Crossrefs

A387099 Numbers that can be written in exactly five ways as s_1^x_1 + ... + s_t^x_t, with 1 < s_1 < ... < s_t and {s_1,..., s_t} = {x_1,..., x_t} for some t > 0.

Original entry on oeis.org

5260225, 7923882, 11054875, 11224211, 11870046, 15466174, 16859617, 16911017, 17276523, 17326946, 18664520, 18668302, 18908170, 19375153, 19706896, 19854394, 20050965, 20757873, 21468249, 24723272, 26689657, 26925803, 26974782, 27214122, 27336893, 28055974
Offset: 1

Author

David A. Corneth, Aug 16 2025

Keywords

Examples

			5260225 = 2^22 + 3^8 + 4^5 + 5^2 + 7^7 + 8^3 + 22^4
        = 2^21 + 3^8 + 4^10 + 7^3 + 8^7 + 10^4 + 21^2
        = 2^7 + 3^14 + 4^5 + 5^8 + 6^6 + 7^3 + 8^2 + 14^4
        = 2^15 + 3^10 + 4^9 + 5^5 + 6^4 + 7^6 + 9^7 + 10^3 + 15^2
        = 2^11 + 3^7 + 4^10 + 5^9 + 6^8 + 7^3 + 8^5 + 9^6 + 10^4 + 11^2.
7923882 = 2^8 + 3^5 + 4^11 + 5^9 + 6^3 + 8^4 + 9^2 + 11^6
        = 2^12 + 3^9 + 4^5 + 5^6 + 6^2 + 7^8 + 8^7 + 9^3 + 12^4
        = 2^14 + 3^13 + 4^4 + 5^5 + 6^7 + 7^8 + 8^6 + 13^2 + 14^3
        = 2^18 + 3^14 + 4^6 + 5^9 + 6^3 + 7^7 + 9^5 + 14^4 + 18^2
        = 2^19 + 3^14 + 4^8 + 5^9 + 6^6 + 8^2 + 9^4 + 14^5 + 19^3.
11054875 = 2^3 + 3^6 + 4^10 + 5^5 + 6^2 + 7^4 + 10^7
         = 2^15 + 3^8 + 4^6 + 5^2 + 6^9 + 7^7 + 8^3 + 9^5 + 15^4
         = 2^22 + 3^12 + 4^2 + 5^6 + 6^7 + 7^8 + 8^5 + 12^3 + 22^4
         = 2^9 + 3^13 + 4^10 + 5^3 + 6^5 + 7^8 + 8^7 + 9^6 + 10^4 + 13^2
         = 2^11 + 3^12 + 4^8 + 5^7 + 6^9 + 7^6 + 8^3 + 9^2 + 11^5 + 12^4.
		

Crossrefs

A387215 a(n) is the smallest k such that, for any m >= k, m is a sum of exactly n distinct primes.

Original entry on oeis.org

18, 31, 42, 61, 84, 103, 138, 163, 204, 245, 294, 335, 390, 449, 516, 575, 648, 725, 804, 885, 978, 1067, 1164, 1277, 1374, 1493, 1608, 1739, 1866, 2003, 2142, 2291, 2436, 2603, 2760, 2933, 3096, 3281, 3468, 3647, 3858, 4055, 4248, 4457, 4684, 4913, 5142, 5375, 5604
Offset: 3

Author

David A. Corneth, Aug 22 2025

Keywords

Comments

In computation it is assumed that if for any m where a(n) = k <= m <= k + 3*n we have m is the sum of n distinct positive integers then a(n) = k.

Examples

			a(3) = 18 as 17 is not the sum of 3 distinct primes but any integer m where 18 <= m <= 27 is the sum of 3 distinct primes. It is therefore assumed that a(3) = 18.
		

Crossrefs

A385863 a(n) is the largest number of distinct prime factors a number with at most n digits can have.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 39, 40
Offset: 1

Author

David A. Corneth, Aug 20 2025

Keywords

Comments

Also the largest k such that primorial(k) < 10^n.
"at most" in name could also be "exactly" and it gives the same data.
a(n) is the number of distinct prime factors of A091800(n).

Examples

			a(5) = 6 as primorial(6) = 30030 < 10^5 < 510510 = primorial(6 + 1) = primorial(7).
		

Programs

Formula

a(n) = A001221(A091800(n)).

A387151 a(n) = n*n! / Product_{k=1..n} radical(k), where radical(n) is the product of distinct prime factors of n, cf. A007947.

Original entry on oeis.org

0, 1, 2, 3, 8, 10, 12, 14, 64, 216, 240, 264, 576, 624, 672, 720, 6144, 6528, 20736, 21888, 46080, 48384, 50688, 52992, 221184, 1152000, 1198080, 11197440, 23224320, 24053760, 24883200, 25712640, 424673280, 437944320, 451215360, 464486400, 2866544640
Offset: 0

Author

David A. Corneth and Peter Luschny, Aug 18 2025

Keywords

Crossrefs

Cf. A387140.

Programs

  • Maple
    A387151 := n -> n*n! / mul(NumberTheory:-Radical(k), k = 1..n): seq(A387151(n), n = 0..36);
  • Mathematica
    k = 1; {0}~Join~Reap[Do[k *= Times @@ FactorInteger[n][[;; , 1]]; Sow[n*n!/k], {n, 36}] ][[-1, 1]] (* Michael De Vlieger, Aug 18 2025 *)

Formula

a(n) = n! / A387140(n) for n >= 1.

A386521 Integers w such that the Diophantine equation x^2 + y^3 + z^4 = w^5 with GCD(x,y,z)=1 has no positive integer solutions.

Original entry on oeis.org

1, 3, 4, 5, 6, 10, 13, 22, 27, 34, 36, 42, 43, 47, 62, 72, 76, 87, 95, 102, 111, 183, 251, 279, 315, 322, 327, 344, 483, 490, 528, 615, 708, 762, 1170, 1302, 2295, 2526, 3282, 3382, 6012
Offset: 1

Author

David A. Corneth and Zhining Yang, Jul 24 2025

Keywords

Comments

a(42) > 6500. - Giovanni Resta, Aug 12 2025

Examples

			9 is not a term because 9^5 = x^2 + y^3 + z^4 where GCD(x,y,z)=1 has 5 positive integer solutions: {220,22,1}, {64,38,3}, {241,7,5}, {9,38,8}, {118,29,12}.
		

Crossrefs

Programs

  • Mathematica
    f[w_]:=(c=0;zz=w^5;Do[yy=zz-z^4;Do[xx=yy-y^3;x=Sqrt@xx;
    If[IntegerQ@x,If[GCD[x,y,z]==1,c++]],{y,Floor[yy^(1/3)]}],{z,Floor[zz^(1/4)]}];c);Select[Range@50,f@#==0&]

Extensions

a(41) from Giovanni Resta, Aug 12 2025

A386377 a(n) is the number of solutions to the equation x^2 + y^3 + z^4 = w^5 where GCD(x, y, z)=1.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 2, 2, 5, 0, 1, 1, 0, 1, 1, 1, 3, 2, 1, 2, 2, 0, 2, 2, 4, 1, 0, 2, 2, 1, 2, 1, 13, 0, 2, 0, 1, 3, 1, 1, 4, 0, 0, 7, 5, 3, 0, 2, 10, 1, 1, 2, 7, 2, 1, 1, 8, 1, 2, 1, 7, 0, 4, 3, 8, 4, 4, 1, 1, 5, 1, 0, 11, 1, 2, 0, 3, 1, 3, 5, 12, 7, 2, 2, 2, 2, 0, 1, 14, 2, 2, 1
Offset: 1

Author

David A. Corneth and Zhining Yang, Jul 20 2025

Keywords

Examples

			a(9) = 5 because x^2 + y^3 + z^4 = 9^5 where GCD(x,y,z)=1 has 5 positive integer solutions :{220,22,1},{64,38,3},{241,7,5},{9,38,8},{118,29,12}.
		

Crossrefs

Programs

  • Mathematica
    f[w_]:=(c=0;zz=w^5;Do[yy=zz-z^4;Do[xx=yy-y^3;x=Sqrt@xx;
    If[IntegerQ@x,If[GCD[x,y,z]==1,c++]],{y,Floor[yy^(1/3)]}],{z,Floor[zz^(1/4)]}];c);Array[f@#&, 30]

A387032 Numbers k with digits different from 0 and 1.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 222
Offset: 1

Author

David A. Corneth, Aug 13 2025

Keywords

Comments

A062998 contains numbers like 123, 124, 125,.. which are not in this sequence. - R. J. Mathar, Aug 14 2025
A037344 contains numbers like 2047 and 4095 which are not in this sequence. - R. J. Mathar, Aug 14 2025

Examples

			2 is in the sequence since it does not contain 0 nor 1.
12 is not in the sequence since it has digit 1.
		

Crossrefs

Intersection of A052382 and A052383.

Programs

  • Maple
    isA387032 := proc(n)
        local d ;
        for d in convert(n,base,10) do
            if d <=1 then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A387032 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            2;
        else
            for a from procname(n-1)+1 do
                if isA387032(a) then
                    return a;
                end if;
            end do;
        end if;
    end proc:
    seq(A387032(n),n=1..200) ; # R. J. Mathar, Aug 14 2025
  • Mathematica
    Select[Range[222], Total@ DigitCount[#, 10, {0, 1}] == 0 &] (* Michael De Vlieger, Aug 13 2025 *)
  • PARI
    is(n) = if(n <= 0, return(0)); Set(digits(n))[1] >= 2
    
  • Python
    def ok(n): return {"0","1"} & set(str(n)) == set()
    print([k for k in range(223) if ok(k)]) # Michael S. Branicky, Aug 13 2025
    
  • Python
    def A387032(n):
        m = ((k:=7*n+1).bit_length()-1)//3
        return sum((2+((k-(1<<3*m))//(7<<3*j)&7))*10**j for j in range(m)) # Chai Wah Wu, Aug 13 2025

A380442 a(n) is the largest Frobenius number of three distinct relatively prime numbers that sum to n.

Original entry on oeis.org

1, 1, 3, 2, 5, 7, 7, 11, 13, 11, 17, 19, 23, 23, 29, 31, 35, 39, 43, 47, 51, 47, 59, 63, 67, 71, 79, 83, 89, 95, 101, 107, 113, 103, 125, 131, 139, 143, 153, 155, 167, 175, 181, 191, 199, 199, 215, 223, 233, 239, 251, 259, 269, 279, 289, 299, 309, 311, 329, 339
Offset: 9

Author

David A. Corneth, Jul 25 2025

Keywords

Comments

6 is the smallest number that can be partitioned into three distinct positive integers excluding n = 1 through 5.
a(6) would be -1 as the only partition of 6 into 3 distinct numbers that are relatively prime are (1, 2, 3) and the largest Frobenius number of that partition is -1.
Similarly a(7) and a(8) would be -1 as all partitions of these numbers into three distinct parts have a 1 in them.

Examples

			a(11) = 3 as the partitions of 11 into 3 distinct numbers that are relatively prime are (2,4,5) and (2,3,6) that have Frobenius number 3 and 1 respectively and their maximum is 3.
		

Crossrefs

Cf. A386243.

A386905 Distinct terms in A385988.

Original entry on oeis.org

1, 2, 3, 7, 23, 11415, 56553873808298479843537432588765043239809588104012779518849306976361095532563320075112688420502361617080665176812695
Offset: 1

Author

Paolo Xausa and David A. Corneth, Aug 07 2025

Keywords

Crossrefs

Cf. A385988.

Programs

  • Mathematica
    s = 0; k = 1; Reap[Do[s += k; If[IntegerQ@ Log2[s], k = n; Sow[k]], {n, 2^16}] ][[-1, 1]] (* Michael De Vlieger, Aug 07 2025 *)
  • PARI
    \\ See Corneth link