A387023 Integers w such that the Diophantine equation x^2 + y^3 + z^4 = w^5 where GCD(x,y,z)=1 has exactly 5 positive integer solutions.
9, 45, 70, 80, 120, 124, 125, 128, 133, 143, 170, 175, 180, 195, 201, 220, 224, 236, 252, 264, 275, 278, 296, 308, 311, 312, 330, 332, 336, 337, 352, 354, 355, 360, 362, 366, 374, 375, 380, 386, 390, 394, 399, 404, 411, 416, 418, 428, 430, 444, 461, 466, 477, 484, 488, 500
Offset: 1
Examples
444 is in the sequence because 444^5 = x^2 + y^3 + z^4 where GCD (x, y, z) = 1 has exactly 5 positive integer solutions: {676786, 25603, 343}, {342332, 25775, 345}, {4123199, 5503, 544}, {2451712, 21919, 919}, {3889117, 679, 1208}.
Links
- Zhining Yang, Table of n, a(n) for n = 1..328
Programs
-
Mathematica
Do[w5=w^5;s={};c=0; Do[yy=w5-z^4;Do[xx=yy-y^3;x=Sqrt@xx; If[IntegerQ@x,If[GCD[x,y,z]==1,c++;AppendTo[s,{x,y,z}]]],{y,Floor[yy^(1/3)]}],{z,Floor[w5^(1/4)]}]; If[c==5,Print[w,s]],{w,100}]
Comments