cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Zhining Yang

Zhining Yang's wiki page.

Zhining Yang has authored 128 sequences. Here are the ten most recent ones:

A387023 Integers w such that the Diophantine equation x^2 + y^3 + z^4 = w^5 where GCD(x,y,z)=1 has exactly 5 positive integer solutions.

Original entry on oeis.org

9, 45, 70, 80, 120, 124, 125, 128, 133, 143, 170, 175, 180, 195, 201, 220, 224, 236, 252, 264, 275, 278, 296, 308, 311, 312, 330, 332, 336, 337, 352, 354, 355, 360, 362, 366, 374, 375, 380, 386, 390, 394, 399, 404, 411, 416, 418, 428, 430, 444, 461, 466, 477, 484, 488, 500
Offset: 1

Author

Zhining Yang, Aug 13 2025

Keywords

Examples

			444 is in the sequence because 444^5 = x^2 + y^3 + z^4 where GCD (x, y, z) = 1 has exactly 5 positive integer solutions: {676786, 25603, 343}, {342332, 25775, 345}, {4123199, 5503, 544}, {2451712, 21919, 919}, {3889117, 679, 1208}.
		

Crossrefs

Programs

  • Mathematica
    Do[w5=w^5;s={};c=0;
    Do[yy=w5-z^4;Do[xx=yy-y^3;x=Sqrt@xx;
    If[IntegerQ@x,If[GCD[x,y,z]==1,c++;AppendTo[s,{x,y,z}]]],{y,Floor[yy^(1/3)]}],{z,Floor[w5^(1/4)]}];
    If[c==5,Print[w,s]],{w,100}]

A386521 Integers w such that the Diophantine equation x^2 + y^3 + z^4 = w^5 with GCD(x,y,z)=1 has no positive integer solutions.

Original entry on oeis.org

1, 3, 4, 5, 6, 10, 13, 22, 27, 34, 36, 42, 43, 47, 62, 72, 76, 87, 95, 102, 111, 183, 251, 279, 315, 322, 327, 344, 483, 490, 528, 615, 708, 762, 1170, 1302, 2295, 2526, 3282, 3382, 6012
Offset: 1

Author

David A. Corneth and Zhining Yang, Jul 24 2025

Keywords

Comments

a(42) > 6500. - Giovanni Resta, Aug 12 2025

Examples

			9 is not a term because 9^5 = x^2 + y^3 + z^4 where GCD(x,y,z)=1 has 5 positive integer solutions: {220,22,1}, {64,38,3}, {241,7,5}, {9,38,8}, {118,29,12}.
		

Crossrefs

Programs

  • Mathematica
    f[w_]:=(c=0;zz=w^5;Do[yy=zz-z^4;Do[xx=yy-y^3;x=Sqrt@xx;
    If[IntegerQ@x,If[GCD[x,y,z]==1,c++]],{y,Floor[yy^(1/3)]}],{z,Floor[zz^(1/4)]}];c);Select[Range@50,f@#==0&]

Extensions

a(41) from Giovanni Resta, Aug 12 2025

A386377 a(n) is the number of solutions to the equation x^2 + y^3 + z^4 = w^5 where GCD(x, y, z)=1.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 2, 2, 5, 0, 1, 1, 0, 1, 1, 1, 3, 2, 1, 2, 2, 0, 2, 2, 4, 1, 0, 2, 2, 1, 2, 1, 13, 0, 2, 0, 1, 3, 1, 1, 4, 0, 0, 7, 5, 3, 0, 2, 10, 1, 1, 2, 7, 2, 1, 1, 8, 1, 2, 1, 7, 0, 4, 3, 8, 4, 4, 1, 1, 5, 1, 0, 11, 1, 2, 0, 3, 1, 3, 5, 12, 7, 2, 2, 2, 2, 0, 1, 14, 2, 2, 1
Offset: 1

Author

David A. Corneth and Zhining Yang, Jul 20 2025

Keywords

Examples

			a(9) = 5 because x^2 + y^3 + z^4 = 9^5 where GCD(x,y,z)=1 has 5 positive integer solutions :{220,22,1},{64,38,3},{241,7,5},{9,38,8},{118,29,12}.
		

Crossrefs

Programs

  • Mathematica
    f[w_]:=(c=0;zz=w^5;Do[yy=zz-z^4;Do[xx=yy-y^3;x=Sqrt@xx;
    If[IntegerQ@x,If[GCD[x,y,z]==1,c++]],{y,Floor[yy^(1/3)]}],{z,Floor[zz^(1/4)]}];c);Array[f@#&, 30]

A386988 a(n) is the smallest integer w such that the equation x^2 + y^4 + z^6 = w^8 where GCD(x,y,z)=1 has exactly n positive integer solutions.

Original entry on oeis.org

25, 9, 17, 53, 3
Offset: 1

Author

Zhining Yang, Aug 12 2025

Keywords

Comments

a(6)>1024.

Examples

			a(3) = 17 because 17^8 = 36840^2 + 273^4 + 20^6 = 82367^2 + 24^4 + 24^6 = 48^2 + 287^4  + 24^6 and for no integer smaller than 17 we have 3 solutions.
		

Crossrefs

Cf. A386373.

Programs

  • Mathematica
    f[w_]:=(v={};c=0;w8=w^8;
    Do[yy=w8-z^6;Do[xx=yy-y^4;x=Sqrt@xx;
    If[IntegerQ@x,If[GCD[x,y,z]==1,AppendTo[v,{x,y,z}];c++]],{y,Floor[yy^(1/4)]}],{z,Floor[w8^(1/6)]}];{c,w,v});
    s=Table[{},5];
    For[k=1,k<=60,k++,r=f[k][[1]];If[s[[r]]=={},s[[r]]=f[k];Print[s[[r]]]]]

A386373 a(n) is the smallest integer w such that the equation x^2 + y^3 + z^4 = w^5 where GCD(x,y,z)=1 has exactly n positive integer solutions.

Original entry on oeis.org

2, 7, 17, 25, 9, 100, 44, 57, 117, 49, 73, 81, 33, 89, 177, 193, 305, 161, 257, 273, 425, 289, 697, 441, 313, 689, 369, 593, 809, 233, 761, 1865, 2001, 857, 1121, 649, 1353, 865, 521, 1257, 577, 681, 2081, 1409, 1169, 1753, 1801, 1201, 1745, 2833, 3853, 3649, 3353, 1305, 793
Offset: 1

Author

Zhining Yang, Jul 19 2025

Keywords

Comments

From David A. Corneth, Jul 20 2025: (Start)
a(41) = 577. If a(41) is 1 (mod 8) then that values is exact.
For 10 <= n <= 30 we have a(n) == 1 (mod 8).
Heuristically this is no coincidence. There are 8^3 = 512 tuples (x, y, z) mod 8. The frequencies of k (mod 8) for x^2 + y^3 + z^4 for k = 0 through 7 are 64, 128, 96, 32, 64, 64, 32, 32 respectively. So 1 (mod 8) has the single largest value at 128 such tuples.
Extending this to other moduli like 56 we get the largest frequencies (7168) come from 9, 17, 25 and 33 (mod 56).
The second largest frequency is 6272 which occurs at 49 (mod 56). For n = 3, 4 and 10 <= n <= 20, 22, 30 we have a(n) == 9, 17, 25, 33 or 49 (mod 56). (End)

Examples

			a(4) = 25 because 25^5 = 1852^2 + 185^3 + 8^4 = 2711^2 + 134^3 + 10^4 = 2472^2 + 150^3 + 23^4 = 2973^2 + 15^3 + 31^4 and no integer less than 25 has 4 solutions.
		

Crossrefs

Programs

  • Mathematica
    f[w_]:=(v={};c=0;nn=w^5;
    Do[yy=nn-z^4;Do[xx=yy-y^3;x=Sqrt@xx;
    If[IntegerQ@x,If[GCD[x,y,z]==1,AppendTo[v,{x,y,z,d}];c++]],{y,Floor[yy^(1/3)]}],{z,Floor[nn^(1/4)]}];{c,w,v});
    s=Table[{},20];
    For[k=1,k<=100,k++,r=f[k][[1]];If[s[[r]]=={},s[[r]]=g[k];Print[s[[r]]]]]

Extensions

a(21)-a(31) from David A. Corneth, Jul 20 2025
a(32)-a(58) from Zhining Yang, Jul 31 2025

A385976 Least integer k such that there are exactly n primitive Heron triangles having the same area and perimeter k.

Original entry on oeis.org

12, 70, 98, 2002, 2842, 20026, 91698, 721786
Offset: 1

Author

Zhining Yang, Jul 13 2025

Examples

			a(3) = 98 because there exists 3 primitive Heron triangles: {{29, 29, 40}, {25, 34, 39}, {24, 37, 37}} with same area 420 and same perimeter 98.
a(6) = 20026  because there exists 6 primitive Heron triangles: {{2108,8493,9425}, {2173,8398,9455}, {2261,8277,9488},{2418,8075,9533},{4123,6205,9698},{4588,5729,9709}} with same area 8410920 and same perimeter 20026.
a(8) = 721786  because there exists 8 primitive Heron triangles: {{188105,189428,344253}, {179133,198458,344195},{124338,256523,340925}, {116093,266029,339664}, {91448,299013,331325}, {88253,304980,328553}, {85981,310493,325312}, {85618,311627,324541}} with same area 13338605280 and same perimeter 721786.
		

Crossrefs

Cf. A385819.

Programs

  • Mathematica
    sol=Association[];
    For[n=6,n<=3000,n+=2,For[z=Ceiling[n/3],zz>=y>=x&&GCD[x,y,z]==1,p=(x+y+z)/2;A=Sqrt[p (p-x) (p-y) (p-z)];
    If[IntegerQ[A],d=ToString@n<>"->"<>ToString@A;t={x,y,z};
    If[KeyExistsQ[sol,d]==False,sol[d]={d}];
    If[KeyExistsQ[sol,d],AppendTo[sol[d],t]]]]]]];
    Do[Print[k,SelectFirst[sol,Length@#==k+1&]],{k,5}]
  • Python
    from math import gcd
    from collections import Counter
    from itertools import count
    from sympy.ntheory.primetest import is_square
    def A385976(n):
        for k in count(6,2):
            c = Counter()
            for x in range(1,k//3+1):
                for y in range(x,k//2+1):
                    s, m = k>>1, x+y
                    if  (m<<1)>k>=m+y and gcd(x,y,k-m)==1 and is_square(s*(a:=(s-x)*(s-y)*(m-s))):
                        c[a]+=1
                        if c[a]>n:
                            break
                else:
                    continue
                break
            else:
                if any(c[d]==n for d in c):
                    return k # Chai Wah Wu, Jul 25 2025

Extensions

a(7)-a(8) from Xianwen Wang, Jul 13 2025
a(3) corrected by Xianwen Wang, Aug 19 2025

A385819 Numbers k such that there are least five primitive Heron triangles having the same area and perimeter k.

Original entry on oeis.org

2842, 3542, 5642, 5750, 6314, 7238, 7546, 9790, 15470, 15778, 17710, 20026, 21658, 21970, 22610, 26962
Offset: 1

Author

Zhining Yang, Jul 09 2025

Keywords

Examples

			3542 is a term because there exists 5 primitive Heron triangles: {{421,1518,1603}, {511,1375,1656}, {583,1288,1671},{759,1096,1687}, {851,1001,1690}} with same perimeter 3542 and same area 318780.
20026 is a term because there exists 6 primitive Heron triangles: {{2108,8493,9425}, {2173,8398,9455}, {2261,8277,9488}, {2418,8075,9533}, {4123,6205,9698}, {4588,5729,9709}} with same perimeter 20026 and same area 8410920.
		

Crossrefs

Programs

  • Mathematica
    sol = Association[];
    For[n = 2, n <= 6000, n += 2,
    For[z = Ceiling[n/3], z < Floor[n/2], z++,
    For[x = 1, x < Floor[n/3], x++, y = n - x - z;
       If[x + y > z > y > x && GCD[x, y, z] == 1, p = (x + y + z)/2;
        A = Sqrt[p (p - x) (p - y) (p - z)];
        If[IntegerQ[A], d = ToString@n <> "->" <> ToString@A; t = {x, y, z};
         If[KeyExistsQ[sol, d], AppendTo[sol[d], t], sol[d] = {t}]]]]]];
    Select[sol, Length@# > 4 &]

A385709 Least prime p such that the decimal expansion of p^2 contains exactly n distinct primes as substrings.

Original entry on oeis.org

11, 5, 23, 61, 73, 239, 487, 523, 569, 3461, 1319, 3373, 8923, 4937, 12619, 11489, 15569, 32189, 105173, 135319, 46619, 56473, 177127, 234161, 295861, 471923, 664319, 2366387, 3183613, 1092389, 3513877, 7702319, 4632077, 10666177, 13977923, 20825939, 35821939
Offset: 1

Author

Zhining Yang, Jul 07 2025

Keywords

Examples

			a(9) = 569 because 569^2 = 323761, which contains 9 distinct primes as substring:{2,3,7,23,37,61,761,3761,23761}, and no prime less than 569 has 9 solutions.
		

Crossrefs

Programs

  • Mathematica
    b = Table[{}, 9]; Do[d = IntegerDigits[p^2];
     t = Union@Select[FromDigits /@ Flatten[Table[Partition[d, k, 1], {k, Length@d}], 1], PrimeQ]; c = Length@t;
     If[b[[c]] == {}, b[[c]] = {p, p^2, t, c}], {p, Prime@Range@120}]; b // Grid

A385724 The least integer of n consecutive numbers where each has its sum of prime factors, with multiplicity, being a prime.

Original entry on oeis.org

17, 2, 5, 10, 1547, 8837, 1293224, 52445796, 3267037, 896531141, 183208285259
Offset: 1

Author

Zhining Yang, Jul 08 2025

Keywords

Comments

According to Primepuzzles, puzzle 445:
a(10) = 896531141 given by Carlos Rivera.
a(11) = 183208285259 given by Jens Kruse Andersen.

Examples

			a(4) = 10 because 10=2*5, 11=11, 12 = 2^2*3, 13 = 13 and sum of prime factors of the four consecutive numbers are all primes : 2 + 5 = 7, 11, 2 + 2 + 3 = 7, 13.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PrimeQ@Total[Times @@@ FactorInteger[n]]; a = Table[0, 6];
    c = 0; Do[If[c == 0, s = n]; If[f[n] == False, If[a[[c]] == 0, a[[c]] = s]; c = 0, c++], {n, 2, 10000}]; a

A385409 a(n) is the smallest positive integer k such that the Diophantine equation x^3 + y^3 + z^3 + w^3 = k^2, where 0 < x < y < z < w has exactly n integer solutions.

Original entry on oeis.org

10, 42, 39, 153, 126, 276, 273, 312, 315, 476, 588, 336, 546, 777, 1053, 756, 1216, 1386, 1560, 1134, 1323, 1488, 1365, 1368, 1344, 1596, 2366, 2496, 2988, 1680, 2548, 1736, 2184, 3003, 3720, 2520, 3185, 3552, 2268, 3564, 4095, 3213, 4578, 4392, 5208, 4004, 4599, 5733
Offset: 1

Author

Zhining Yang, Jun 27 2025

Keywords

Comments

Conjecture: a(n) exists for all n.

Examples

			a(4)=153, because 153^2 = 5^3 + 15^3 + 21^3 + 22^3 = 2^3 + 7^3 + 15^3 + 27^3 = 6^3 + 8^3 + 9^3 + 28^3 = 1^3 + 5^3 + 11^3 + 28^3 and no integer less than 153 has 4 solutions.
		

Crossrefs

Programs

  • Mathematica
    s = Table[{k, Length@Select[PowersRepresentations[k^2, 4, 3],
          0 < #[[1]] < #[[2]] < #[[3]] < #[[4]] &]}, {k, 500}];
    a = Table[SelectFirst[s, #[[2]] == k &], {k, 10}][[All, 1]]